搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探空湿度测量太阳辐射误差修正流体动力学研究

冒晓莉 肖韶荣 刘清惓 李敏 张加宏

探空湿度测量太阳辐射误差修正流体动力学研究

冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏
PDF
导出引用
  • 针对太阳辐射加热导致的误差显著限制了相对湿度测量的准确度,提出一种新颖的相对湿度误差修正方法–基于流体动力学的数值分析法. 在流体-固体耦合传热数值模拟分析中考虑探空湿度传感器的外部热环境情况,施加对流-太阳辐射耦合热边界条件,建立了地面到32 km高空不同气压和温度条件下探空湿度传感器的温度误差分析模型. 结合Goff-Gratch饱和水汽压逼近公式,进而提出了相应的相对湿度误差流体动力学数值分析模型,并且着重研究了太阳辐射方向、传感器尺寸、反射率和衬底材料热导率等物理参数对相对湿度误差的影响. 分析数值仿真结果表明:随着海拨的升高,其与太阳辐射加热引起的相对湿度误差之间存在非线性的单调递增关系;太阳辐射方向对于湿度测量精度的影响显著,当太阳辐射方向垂直于传感器正面时误差最大、传感器顶部时次之、侧面时误差最小;虽然通过减小探空湿度传感器的尺寸、降低衬底材料的热导率以及提高反射率均可以一定程度地降低太阳辐射加热引起的相对湿度误差,但是在低气压高空条件下,太阳辐射加热误差对于湿度准确性的影响仍然十分明显,需加以修正. 与实验结果对比表明,基于流体动力学模拟仿真的相对湿度误差数值分析法为辐射误差修正提供了一种新的途径.
    • 基金项目: 国家自然科学基金(批准号:41275042,61306138,61307113)、江苏省自然科学基金(批准号:BK2012460)和江苏高校优势学科建设工程资助的课题.
    [1]

    Deng Z Y, Min Q W, Zhang Q, Li W H, Liu X S, Wang L X, Lu Q, Li S D, Cao J H, Xu J Q 2010 Plateau Meteor. 29 810 (in Chinese) [邓振镛, 闵庆文, 张强, 李文华, 刘兴士, 王礼先, 卢琦, 李世东, 曹建华, 徐金强 2010 高原气象 29 810]

    [2]

    Elliott William P, Ross Rebecca J 1998 J. Climate 11 2424

    [3]

    Posada R, García-Ortega E, Sánchez J L, López L 2013 Atom. Res. 122 174

    [4]

    Liu Z Z, Li M, Zhong W K, Wong M S 2013 J. Geodrn. 72 86

    [5]

    Li W 2012 Plateau Meteor. 31 568 (in Chinese) [李伟 2012 高原气象 31 568]

    [6]

    Campmany E, Bech J, Rodríguez-Marcos J, Sola Y, Lorente J 2010 Atom. Res. 97 385

    [7]

    Koulali A, Ouazar D, Bock O, Fadil A 2012 Atom. Res. 104–105 273

    [8]

    Berton Roland P H 2008 Atom. Res. 89 12

    [9]

    Yue P, Zhang Q, Zhao W, Wang J S, Wang R Y, Yao Y B, Wang S, Hao X C, Yang F L, Wang R A 2013 Acta Phys. Sin. 62 209201 (in Chinese) [岳平, 张强, 赵文, 王劲松, 王润元, 姚玉壁, 王胜, 郝小翠, 阳伏林, 王若安 2013 物理学报 62 209201]

    [10]

    Nash J, Oakley T, Vömel H, Li W 2011 WMO Intercomparison of High Quality Radiosonde Systems Yangjiang, China, 12 July-3 August, 2010 p9

    [11]

    Miloshevich Larry M, Paukkunen Ari, V?mel Holger, Oltmans Samuel J 2004 J. Atoms. Ocean. Tech. 21 1305

    [12]

    Du L P, Tian R F, Sun Z N, Liu X Y 2012 Proc. CSEE 32 86 (in Chinese) [杜利鹏, 田瑞峰, 孙中宁, 刘晓一 2012 中国电机工程学报 32 86]

    [13]

    Fleming Rex J 1998 J. Atoms. Ocean. Tech. 15 1511

    [14]

    Peng J W, Lū W H, Xing H Y, Wu X J 2013 Chin. J. Sci. Instrum. 34 153 (in Chinese) [彭基伟, 吕文华, 行鸿彦, 武向娟 2013 仪器仪表学报 34 153]

    [15]

    Kent Elizabeth C, Taylor Peter K 1996 J. Atoms. Ocean. Tech. 13 1317

    [16]

    Guichard F, Parsons D, Miller E 2000 J. Climate 13 3611

    [17]

    Zhang Q, Huang J, Zhang L, Zhang L Y 2013 Acta Phys. Sin. 62 139202 (in Chinese) [张强, 黄菁, 张良, 张立阳 2013 物理学报 62 139202]

    [18]

    Liu Q Q, Dai W, Yang R K, Zhang J H, Li M 2013 Plateau Meteor. 32 1157 (in Chinese) [刘清惓, 戴伟, 杨荣康, 张加宏, 李敏 2013 高原气象 32 1157]

    [19]

    Li Y G, Fan J P 1990 Humidity Measurement 1 (Beijing: China Meteorological Press) pp466-470 (in Chinese) [李英干, 范金鹏 1990 湿度测量 1 (北京: 气象出版社) 第466-470]

    [20]

    Ciesielski Paul E, Johnson Richard H, Wang J H 2009 J. Atoms. Ocean. Tech. 26 1763

    [21]

    Wang J H, Zhang L Y, Dai A G, Immler F, Sommer M, Vomel H 2013 J. Atoms. Ocean. Tech. 30 197

    [22]

    Liu L, Zhang S L, Ma Y K, Wu G H, Zheng S K, Wang Y Q 2013 Acta Phys. Sin. 62 038802 (in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 物理学报 62 038802]

    [23]

    Jiang Y M, Liu M 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 物理学报 62 204501]

    [24]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 物理学报 63 044701]

    [25]

    Tao Y J, Huai X L, Li Z G 2009 Chin. Phys. Lett. 26 074701

    [26]

    Zhao C L, Qin M, Huang Q A 2011 IEEE Sens. J. 11 2986

    [27]

    COESA 1976 Standard Atmosphere (Washington DC: U.S. Government Printing Office) pp53-63

    [28]

    Gao H, Weng N Q, Sun G, Zhang C Y 2012 J. Atmos. Environ. Opt. 7 101 (in Chinese) [高慧, 翁宁泉, 孙刚, 张彩云 2012 大气与环境光学学报 7 101]

    [29]

    Ajil K, Buehler Stefan A, John Viju O, Miloshevich Larry M, Mand M, Holl G 2012 J. Atoms. Ocean. Tech. 29 248

  • [1]

    Deng Z Y, Min Q W, Zhang Q, Li W H, Liu X S, Wang L X, Lu Q, Li S D, Cao J H, Xu J Q 2010 Plateau Meteor. 29 810 (in Chinese) [邓振镛, 闵庆文, 张强, 李文华, 刘兴士, 王礼先, 卢琦, 李世东, 曹建华, 徐金强 2010 高原气象 29 810]

    [2]

    Elliott William P, Ross Rebecca J 1998 J. Climate 11 2424

    [3]

    Posada R, García-Ortega E, Sánchez J L, López L 2013 Atom. Res. 122 174

    [4]

    Liu Z Z, Li M, Zhong W K, Wong M S 2013 J. Geodrn. 72 86

    [5]

    Li W 2012 Plateau Meteor. 31 568 (in Chinese) [李伟 2012 高原气象 31 568]

    [6]

    Campmany E, Bech J, Rodríguez-Marcos J, Sola Y, Lorente J 2010 Atom. Res. 97 385

    [7]

    Koulali A, Ouazar D, Bock O, Fadil A 2012 Atom. Res. 104–105 273

    [8]

    Berton Roland P H 2008 Atom. Res. 89 12

    [9]

    Yue P, Zhang Q, Zhao W, Wang J S, Wang R Y, Yao Y B, Wang S, Hao X C, Yang F L, Wang R A 2013 Acta Phys. Sin. 62 209201 (in Chinese) [岳平, 张强, 赵文, 王劲松, 王润元, 姚玉壁, 王胜, 郝小翠, 阳伏林, 王若安 2013 物理学报 62 209201]

    [10]

    Nash J, Oakley T, Vömel H, Li W 2011 WMO Intercomparison of High Quality Radiosonde Systems Yangjiang, China, 12 July-3 August, 2010 p9

    [11]

    Miloshevich Larry M, Paukkunen Ari, V?mel Holger, Oltmans Samuel J 2004 J. Atoms. Ocean. Tech. 21 1305

    [12]

    Du L P, Tian R F, Sun Z N, Liu X Y 2012 Proc. CSEE 32 86 (in Chinese) [杜利鹏, 田瑞峰, 孙中宁, 刘晓一 2012 中国电机工程学报 32 86]

    [13]

    Fleming Rex J 1998 J. Atoms. Ocean. Tech. 15 1511

    [14]

    Peng J W, Lū W H, Xing H Y, Wu X J 2013 Chin. J. Sci. Instrum. 34 153 (in Chinese) [彭基伟, 吕文华, 行鸿彦, 武向娟 2013 仪器仪表学报 34 153]

    [15]

    Kent Elizabeth C, Taylor Peter K 1996 J. Atoms. Ocean. Tech. 13 1317

    [16]

    Guichard F, Parsons D, Miller E 2000 J. Climate 13 3611

    [17]

    Zhang Q, Huang J, Zhang L, Zhang L Y 2013 Acta Phys. Sin. 62 139202 (in Chinese) [张强, 黄菁, 张良, 张立阳 2013 物理学报 62 139202]

    [18]

    Liu Q Q, Dai W, Yang R K, Zhang J H, Li M 2013 Plateau Meteor. 32 1157 (in Chinese) [刘清惓, 戴伟, 杨荣康, 张加宏, 李敏 2013 高原气象 32 1157]

    [19]

    Li Y G, Fan J P 1990 Humidity Measurement 1 (Beijing: China Meteorological Press) pp466-470 (in Chinese) [李英干, 范金鹏 1990 湿度测量 1 (北京: 气象出版社) 第466-470]

    [20]

    Ciesielski Paul E, Johnson Richard H, Wang J H 2009 J. Atoms. Ocean. Tech. 26 1763

    [21]

    Wang J H, Zhang L Y, Dai A G, Immler F, Sommer M, Vomel H 2013 J. Atoms. Ocean. Tech. 30 197

    [22]

    Liu L, Zhang S L, Ma Y K, Wu G H, Zheng S K, Wang Y Q 2013 Acta Phys. Sin. 62 038802 (in Chinese) [刘磊, 张锁良, 马亚坤, 吴国浩, 郑树凯, 王永青 2013 物理学报 62 038802]

    [23]

    Jiang Y M, Liu M 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 物理学报 62 204501]

    [24]

    Yin J F, You Y X, Li W, Hu T Q 2014 Acta Phys. Sin. 63 044701 (in Chinese) [尹纪富, 尤云祥, 李巍, 胡天群 2014 物理学报 63 044701]

    [25]

    Tao Y J, Huai X L, Li Z G 2009 Chin. Phys. Lett. 26 074701

    [26]

    Zhao C L, Qin M, Huang Q A 2011 IEEE Sens. J. 11 2986

    [27]

    COESA 1976 Standard Atmosphere (Washington DC: U.S. Government Printing Office) pp53-63

    [28]

    Gao H, Weng N Q, Sun G, Zhang C Y 2012 J. Atmos. Environ. Opt. 7 101 (in Chinese) [高慧, 翁宁泉, 孙刚, 张彩云 2012 大气与环境光学学报 7 101]

    [29]

    Ajil K, Buehler Stefan A, John Viju O, Miloshevich Larry M, Mand M, Holl G 2012 J. Atoms. Ocean. Tech. 29 248

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1818
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-20
  • 修回日期:  2014-04-13
  • 刊出日期:  2014-07-05

探空湿度测量太阳辐射误差修正流体动力学研究

  • 1. 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 南京 210044;
  • 2. 南京信息工程大学电子与信息工程学院, 南京 210044;
  • 3. 南京信息工程大学大气物理学院, 南京 210044;
  • 4. 南京信息工程大学物理与光电工程学院, 南京 210044
    基金项目: 

    国家自然科学基金(批准号:41275042,61306138,61307113)、江苏省自然科学基金(批准号:BK2012460)和江苏高校优势学科建设工程资助的课题.

摘要: 针对太阳辐射加热导致的误差显著限制了相对湿度测量的准确度,提出一种新颖的相对湿度误差修正方法–基于流体动力学的数值分析法. 在流体-固体耦合传热数值模拟分析中考虑探空湿度传感器的外部热环境情况,施加对流-太阳辐射耦合热边界条件,建立了地面到32 km高空不同气压和温度条件下探空湿度传感器的温度误差分析模型. 结合Goff-Gratch饱和水汽压逼近公式,进而提出了相应的相对湿度误差流体动力学数值分析模型,并且着重研究了太阳辐射方向、传感器尺寸、反射率和衬底材料热导率等物理参数对相对湿度误差的影响. 分析数值仿真结果表明:随着海拨的升高,其与太阳辐射加热引起的相对湿度误差之间存在非线性的单调递增关系;太阳辐射方向对于湿度测量精度的影响显著,当太阳辐射方向垂直于传感器正面时误差最大、传感器顶部时次之、侧面时误差最小;虽然通过减小探空湿度传感器的尺寸、降低衬底材料的热导率以及提高反射率均可以一定程度地降低太阳辐射加热引起的相对湿度误差,但是在低气压高空条件下,太阳辐射加热误差对于湿度准确性的影响仍然十分明显,需加以修正. 与实验结果对比表明,基于流体动力学模拟仿真的相对湿度误差数值分析法为辐射误差修正提供了一种新的途径.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回