搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放电参数对同轴枪中等离子体团的分离的影响

张俊龙 杨亮 闫慧杰 滑跃 任春生

放电参数对同轴枪中等离子体团的分离的影响

张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生
PDF
导出引用
  • 同轴枪中的等离子体团的分离现象主要是由同轴枪内磁场的梯度造成的电流层倾斜而引起的一个增强反馈过程导致的, 这种分离现象越来越成为限制同轴枪有效使用的一个不利因素. 在实验上研究放电参数对等离子体团的分离的影响, 对理论研究和实际应用都具有重要意义. 在实验中发现, 利用光电倍增管可以直接观察到等离子体团的分离程度, 由此可以研究放电参数对等离子体团的分离的影响. 本实验主要研究电容充电电压、电容、放电气压这三个参数对分层现象的影响. 实验发现, 分离程度随着电容以及其充电电压的增大而增强, 随着气压的增大而减弱. 实验结果基于雪犁模型进行分析, 电容以及电容充电电压的增大使放电电流增强使磁场梯度增大而导致电流层的倾斜程度增加, 而使等离子体团的分离程度变严重, 相反, 气压的增加使需要加速更多粒子而导致电流层的倾斜程度减弱, 而使等离子体团分离程度减弱. 分析认为, 通过控制在加速过程中影响电流层倾斜程度的因素可控制共轴枪中等离子体团的分离程度.
    [1]

    John M 1960 Phys. Fluids 3 134

    [2]

    Zhukeshov A M, Amrenova A U, Gabdullina A T, Ibraev B M 2013 Amer. J. Phys 1 5

    [3]

    Messer S, Case A, Bomgardner R, varPhillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502

    [4]

    Mather J W 1965 Phys. Fluids 8 366

    [5]

    Mather J W 1964 Phys. Fluids 7 28

    [6]

    Case A, Messer S, Bomgardner R, Witherspoon F D 2010 Phys. Plasmas 17 053503

    [7]

    Rieker G B, Poehlmann F R, Cappelli M A 2013 Phys. Plasmas 20 073115

    [8]

    Flavio R, Poehlmann F R, Mark A C, Gregory B R 2010 Phys. Plasmas 17 123508

    [9]

    Cheng D Y 1971 AIAA Journal 9 1681

    [10]

    Ticos C M, Wang Z H, Wurden G A, Kline J L 2008 Phys . Rev. Lett . 100 155002

    [11]

    Ticos C M, Wang Z H, Wurden G A, Kline J L 2008 Phys. Plasmas 15 103701

    [12]

    Ticos C M, Wang Z H, Gian L D, Giovanni L 2006 Phys. Plasmas 13 103501

    [13]

    Gao Z X, Feng C H, Yang X Z, Huaug J G 2012 Acta Phys. Sin. 61 145201 (in Chinese) [高著秀, 冯春华, 杨宣宗, 黄建国 2012 物理学报 61 145201]

    [14]

    Han J W, Zhang Z L, Huang J G, Li X Y 2006 Spacecraft Environment Engineering 23 205 (in Chinese) [韩建伟, 张振龙, 黄建国, 李小银 2006 航天器环境工程 23 205]

    [15]

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401 (in Chinese) [蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401]

    [16]

    Schoenberg K F, Richard A G, Ronald W M, Jay T S 1998 Phys. Plasmas 5 2090

    [17]

    Krzysztof Z 1995 Surface and Coatings Technology 74 949

    [18]

    Witherspoon F D, Andrew C, Sarah J M, Richard B 2009 Rev. Sci. Instrum 80 083506

    [19]

    Wang Z H, Paul D B, Cris W B, Michael W M 2005 Review of scientific instruments 76 033501

    [20]

    Inutake M, Ando A, Hattori K, Tobari H 2007 Plasma Phys. Control. Fusion 49 121

    [21]

    varPhilip J H 1962 Phys. Fluids 5 38

    [22]

    varPhilip J H 1964 J. Appl. Phys 35 3425

    [23]

    Cassibry J T, Thio Y C, Wu S T 2006 Phys. Plasmas 13 053101

    [24]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847

    [25]

    Baker K L, Horton R D, Hwang D Q, Evans R W 2002 IEEE Trans on Plasma Science 30 48

    [26]

    Li H W, Han J W, Wu F S, Cai M H, Zhang Z L 2014 Acta Phys. Sin. 63 019401 (in Chinese) [李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙 2014 物理学报 63 019401]

  • [1]

    John M 1960 Phys. Fluids 3 134

    [2]

    Zhukeshov A M, Amrenova A U, Gabdullina A T, Ibraev B M 2013 Amer. J. Phys 1 5

    [3]

    Messer S, Case A, Bomgardner R, varPhillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502

    [4]

    Mather J W 1965 Phys. Fluids 8 366

    [5]

    Mather J W 1964 Phys. Fluids 7 28

    [6]

    Case A, Messer S, Bomgardner R, Witherspoon F D 2010 Phys. Plasmas 17 053503

    [7]

    Rieker G B, Poehlmann F R, Cappelli M A 2013 Phys. Plasmas 20 073115

    [8]

    Flavio R, Poehlmann F R, Mark A C, Gregory B R 2010 Phys. Plasmas 17 123508

    [9]

    Cheng D Y 1971 AIAA Journal 9 1681

    [10]

    Ticos C M, Wang Z H, Wurden G A, Kline J L 2008 Phys . Rev. Lett . 100 155002

    [11]

    Ticos C M, Wang Z H, Wurden G A, Kline J L 2008 Phys. Plasmas 15 103701

    [12]

    Ticos C M, Wang Z H, Gian L D, Giovanni L 2006 Phys. Plasmas 13 103501

    [13]

    Gao Z X, Feng C H, Yang X Z, Huaug J G 2012 Acta Phys. Sin. 61 145201 (in Chinese) [高著秀, 冯春华, 杨宣宗, 黄建国 2012 物理学报 61 145201]

    [14]

    Han J W, Zhang Z L, Huang J G, Li X Y 2006 Spacecraft Environment Engineering 23 205 (in Chinese) [韩建伟, 张振龙, 黄建国, 李小银 2006 航天器环境工程 23 205]

    [15]

    Cai M H, Wu F S, Li H W, Han J W 2014 Acta Phys. Sin. 63 019401 (in Chinese) [蔡明辉, 吴逢时, 李宏伟, 韩建伟 2014 物理学报 63 019401]

    [16]

    Schoenberg K F, Richard A G, Ronald W M, Jay T S 1998 Phys. Plasmas 5 2090

    [17]

    Krzysztof Z 1995 Surface and Coatings Technology 74 949

    [18]

    Witherspoon F D, Andrew C, Sarah J M, Richard B 2009 Rev. Sci. Instrum 80 083506

    [19]

    Wang Z H, Paul D B, Cris W B, Michael W M 2005 Review of scientific instruments 76 033501

    [20]

    Inutake M, Ando A, Hattori K, Tobari H 2007 Plasma Phys. Control. Fusion 49 121

    [21]

    varPhilip J H 1962 Phys. Fluids 5 38

    [22]

    varPhilip J H 1964 J. Appl. Phys 35 3425

    [23]

    Cassibry J T, Thio Y C, Wu S T 2006 Phys. Plasmas 13 053101

    [24]

    Markusic T E, Choueiri E Y, Berkery J W 2004 Phys. Plasmas 11 4847

    [25]

    Baker K L, Horton R D, Hwang D Q, Evans R W 2002 IEEE Trans on Plasma Science 30 48

    [26]

    Li H W, Han J W, Wu F S, Cai M H, Zhang Z L 2014 Acta Phys. Sin. 63 019401 (in Chinese) [李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙 2014 物理学报 63 019401]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2079
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-27
  • 修回日期:  2014-10-19
  • 刊出日期:  2015-04-05

放电参数对同轴枪中等离子体团的分离的影响

  • 1. 大连理工大学物理与光电工程学院, 大连 116023

摘要: 同轴枪中的等离子体团的分离现象主要是由同轴枪内磁场的梯度造成的电流层倾斜而引起的一个增强反馈过程导致的, 这种分离现象越来越成为限制同轴枪有效使用的一个不利因素. 在实验上研究放电参数对等离子体团的分离的影响, 对理论研究和实际应用都具有重要意义. 在实验中发现, 利用光电倍增管可以直接观察到等离子体团的分离程度, 由此可以研究放电参数对等离子体团的分离的影响. 本实验主要研究电容充电电压、电容、放电气压这三个参数对分层现象的影响. 实验发现, 分离程度随着电容以及其充电电压的增大而增强, 随着气压的增大而减弱. 实验结果基于雪犁模型进行分析, 电容以及电容充电电压的增大使放电电流增强使磁场梯度增大而导致电流层的倾斜程度增加, 而使等离子体团的分离程度变严重, 相反, 气压的增加使需要加速更多粒子而导致电流层的倾斜程度减弱, 而使等离子体团分离程度减弱. 分析认为, 通过控制在加速过程中影响电流层倾斜程度的因素可控制共轴枪中等离子体团的分离程度.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回