搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于中微子探测的3-inch光电倍增管的优化设计

郭乐慧 田进寿 卢裕 李红伟

一种用于中微子探测的3-inch光电倍增管的优化设计

郭乐慧, 田进寿, 卢裕, 李红伟
PDF
导出引用
  • 光电倍增管(PMT)作为当前中微子振荡研究的核心探测器件要求具有尽可能大的阴极有效探测面积与较小的渡越时间弥散,其时间特性直接决定了中微子的探测精度.针对高能粒子探测需求,本文优化设计了一种大阴极面超短型3-inch光电倍增管,基于Furman模型与电子轨迹追踪法展示了第一倍增极产生的二次电子向第二倍增极渡越的电子轨迹过程,据此对倍增极结构进行了局部优化;将Monte Carlo法与有限积分法相结合比较了不同分压下PMT内部电势分布对电子轨迹的影响并对优化后的大阴极面PMT的均匀性、收集效率、阴极至第一倍增极间渡越时间弥散(TTSCD1)等关键参数进行了统计与分析;利用particle-in-cell经典算法获得了此款PMT的增益特性.结果表明,优化后的大阴极面超短型PMT阴极有效探测面积较传统模型相比有效提升了30.87%,总长度仅103 mm,为目前最短的3-inch PMT设计结构;在1000 V阳极电压下,阴极顶点单光电子TTSCD1为0.75 ns,较传统3-inch PMT模型相比提升了2.73倍,平均收集效率可达96.40%;当阳极电压为1100 V时,其增益可达106以上.
      通信作者: 田进寿, tianjs@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11475209)资助的课题.
    [1]

    Fukuda Y, Hayakawa T, Ichihara E, et al. 1998Phys. Rev. Lett. 81 1158

    [2]

    Araki T, Enomoto S, Furuno K, et al. 2005Nature 436 499

    [3]

    Cao J 2014Sci. Sin.:Phys. Mech. Astron. 44 1025(in Chinese)[曹俊2014中国科学:物理学力学天文学44 1025]

    [4]

    Fukuda S, Fukuda Y, Hayakawa T, et al. 2003Nucl. Instrum. Meth. A 501 418

    [5]

    Katz U F, Spiering C 2012Prog. Part. Nucl. Phys. 67 651

    [6]

    Hasankiadeh Q D, Kavatsyuk O, Lohner H, Peek H, Steijger J 2013Nucl. Instrum. Meth. A 725 158

    [7]

    Kooijman P, Berbee E, de-Boer R, Rookhuizen H B, Heine E, Hogenbirk J, deJong M, Kok H, Korporaal A, Mos S, Mul G, Peek H, Timmer P, Werneke P, deWolf E 2011Nucl. Instrum. Meth. A 626 S139

    [8]

    Katz U F 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p38

    [9]

    Aiello S, Leonora E, Ameli F, et al. 2013J. Instrum. 8 07001

    [10]

    Kavatsyuk O, Dorosti-Hasankiadeh Q, Lohner H 2012Nucl. Instrum. Meth. A 695 338

    [11]

    Adrian-Martinez S, Ageron M, Aharonian F, et al. 2014Eur. Phys. J. C 74 3056

    [12]

    Aiello S, Classen L, Giordano V, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p118

    [13]

    Bormuth R, Classen L, Kalekin O, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p114

    [14]

    Leskovar B, Lo C C 1975Nucl. Instrum. Meth. 123 145

    [15]

    CST Particle Studio, Computer Simulation Technology Corporation https://www.cst.com/Products/CSTPS[2016-07-12]

    [16]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p44

    [17]

    Fen K S, Lu W Z, Zhu Z H 2005Shanxi Electron. Technol. 06 43(in Chinese)[冯奎胜, 卢万铮, 朱章虎2005山西电子技术06 43]

    [18]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006Acta Phys. Sin. 55 3368(in Chinese)[田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰2006物理学报55 3368]

    [19]

    Furman M A, Pivi M T F 2002Phys. Rev. ST Accel. Beams 5 124404

    [20]

    Zhou R M 2015Photoelectric Emission, Secondary Electron Emission and Photomultiplier Tube (1st Ed.) (Chengdu:University of Electronic Science and Technology of China Press) p127(in Chinese)[周荣楣2015光电发射、次级电子发射与光电倍增管(第一版) (成都:电子科技大学出版社)第127页]

    [21]

    Suzuki A, Mori M, Kaneyuki K, Tanimori T, Takeuchi J, Kyushimaand H, Ohashi Y 1993Nucl. Instrum. Meth. A 329 299

    [22]

    Flyckt S O, Marmonier C 2002Photomultiplier Tubes-Principles and Applications (2nd Ed.) (Brive:Photonis) p14

    [23]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p45

  • [1]

    Fukuda Y, Hayakawa T, Ichihara E, et al. 1998Phys. Rev. Lett. 81 1158

    [2]

    Araki T, Enomoto S, Furuno K, et al. 2005Nature 436 499

    [3]

    Cao J 2014Sci. Sin.:Phys. Mech. Astron. 44 1025(in Chinese)[曹俊2014中国科学:物理学力学天文学44 1025]

    [4]

    Fukuda S, Fukuda Y, Hayakawa T, et al. 2003Nucl. Instrum. Meth. A 501 418

    [5]

    Katz U F, Spiering C 2012Prog. Part. Nucl. Phys. 67 651

    [6]

    Hasankiadeh Q D, Kavatsyuk O, Lohner H, Peek H, Steijger J 2013Nucl. Instrum. Meth. A 725 158

    [7]

    Kooijman P, Berbee E, de-Boer R, Rookhuizen H B, Heine E, Hogenbirk J, deJong M, Kok H, Korporaal A, Mos S, Mul G, Peek H, Timmer P, Werneke P, deWolf E 2011Nucl. Instrum. Meth. A 626 S139

    [8]

    Katz U F 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p38

    [9]

    Aiello S, Leonora E, Ameli F, et al. 2013J. Instrum. 8 07001

    [10]

    Kavatsyuk O, Dorosti-Hasankiadeh Q, Lohner H 2012Nucl. Instrum. Meth. A 695 338

    [11]

    Adrian-Martinez S, Ageron M, Aharonian F, et al. 2014Eur. Phys. J. C 74 3056

    [12]

    Aiello S, Classen L, Giordano V, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p118

    [13]

    Bormuth R, Classen L, Kalekin O, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p114

    [14]

    Leskovar B, Lo C C 1975Nucl. Instrum. Meth. 123 145

    [15]

    CST Particle Studio, Computer Simulation Technology Corporation https://www.cst.com/Products/CSTPS[2016-07-12]

    [16]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p44

    [17]

    Fen K S, Lu W Z, Zhu Z H 2005Shanxi Electron. Technol. 06 43(in Chinese)[冯奎胜, 卢万铮, 朱章虎2005山西电子技术06 43]

    [18]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006Acta Phys. Sin. 55 3368(in Chinese)[田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰2006物理学报55 3368]

    [19]

    Furman M A, Pivi M T F 2002Phys. Rev. ST Accel. Beams 5 124404

    [20]

    Zhou R M 2015Photoelectric Emission, Secondary Electron Emission and Photomultiplier Tube (1st Ed.) (Chengdu:University of Electronic Science and Technology of China Press) p127(in Chinese)[周荣楣2015光电发射、次级电子发射与光电倍增管(第一版) (成都:电子科技大学出版社)第127页]

    [21]

    Suzuki A, Mori M, Kaneyuki K, Tanimori T, Takeuchi J, Kyushimaand H, Ohashi Y 1993Nucl. Instrum. Meth. A 329 299

    [22]

    Flyckt S O, Marmonier C 2002Photomultiplier Tubes-Principles and Applications (2nd Ed.) (Brive:Photonis) p14

    [23]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p45

  • [1] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究. 物理学报, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [2] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [3] 王绍民. 光电倍增管时间分辨特性的探讨. 物理学报, 1962, 18(11): 600-604. doi: 10.7498/aps.18.600
    [4] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [5] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [6] 雷挺, 时文华. 光栅局域调控二维光电探测器. 物理学报, 2020, (0): . doi: 10.7498/aps.70.20201325
    [7] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器. 物理学报, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [8] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [9] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [10] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [11] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [12] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [13] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201044
    [14] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究. 物理学报, 2012, 61(5): 057201. doi: 10.7498/aps.61.057201
    [15] 张岭梓, 左玉华, 曹权, 薛春来, 成步文, 张万昌, 曹学蕾, 王启明. 单载流子光电探测器的高速及高饱和功率的研究. 物理学报, 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [16] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能. 物理学报, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [17] 闫振纲, 林颖璐, 杨娟, 李振华, 卞保民. 光电探测器随机噪声特征量统计分布函数. 物理学报, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [18] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [19] 祁晓萌, 彭文博, 赵小龙, 贺永宁. 基于高阻ZnO薄膜的光电导型紫外探测器. 物理学报, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [20] 陈岩松. 铁电薄膜探测器PbZrTiO3的红外光电响应实验研究. 物理学报, 1998, 47(8): 1378-1382. doi: 10.7498/aps.47.1378
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1017
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-16
  • 修回日期:  2016-08-08
  • 刊出日期:  2016-11-05

一种用于中微子探测的3-inch光电倍增管的优化设计

  • 1. 中国科学院西安光学精密机械研究所, 超快诊断技术重点实验室, 西安 710119;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 海南展创光电技术有限公司, 海南 571924;
  • 4. 山西大学极端光学协同创新中心, 太原 030006
  • 通信作者: 田进寿, tianjs@opt.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11475209)资助的课题.

摘要: 光电倍增管(PMT)作为当前中微子振荡研究的核心探测器件要求具有尽可能大的阴极有效探测面积与较小的渡越时间弥散,其时间特性直接决定了中微子的探测精度.针对高能粒子探测需求,本文优化设计了一种大阴极面超短型3-inch光电倍增管,基于Furman模型与电子轨迹追踪法展示了第一倍增极产生的二次电子向第二倍增极渡越的电子轨迹过程,据此对倍增极结构进行了局部优化;将Monte Carlo法与有限积分法相结合比较了不同分压下PMT内部电势分布对电子轨迹的影响并对优化后的大阴极面PMT的均匀性、收集效率、阴极至第一倍增极间渡越时间弥散(TTSCD1)等关键参数进行了统计与分析;利用particle-in-cell经典算法获得了此款PMT的增益特性.结果表明,优化后的大阴极面超短型PMT阴极有效探测面积较传统模型相比有效提升了30.87%,总长度仅103 mm,为目前最短的3-inch PMT设计结构;在1000 V阳极电压下,阴极顶点单光电子TTSCD1为0.75 ns,较传统3-inch PMT模型相比提升了2.73倍,平均收集效率可达96.40%;当阳极电压为1100 V时,其增益可达106以上.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回