搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变

蒋招绣 辛铭之 申海艇 王永刚 聂恒昌 刘雨生

引用本文:
Citation:

多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变

蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生

Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression

Jiang Zhao-Xiu, Xin Ming-Zhi, Shen Hai-Ting, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng
PDF
导出引用
  • 通过添加造孔剂的方法制备了四种不同孔隙率未极化PZT95/5铁电陶瓷. 采用非接触式的数字散斑相关性分析(digital image correltation, DIC)全场应变光学测量技术, 对多孔未极化PZT95/5 铁电陶瓷开展了单轴压缩实验研究, 讨论了孔隙率对未极化PZT95/5铁电陶瓷的力学响应与畴变、相变行为的影响. 多孔未极化PZT95/5铁电陶瓷的单轴压缩应力-应变关系呈现出类似于泡沫或蜂窝材料的三阶段变形特征, 其变形机理主要归因于畴变和相变的共同作用, 与微孔洞塌缩过程无关. 多孔未极化PZT95/5铁电陶瓷的弹性模量、压缩强度都随着孔隙率的增加而明显降低, 而孔隙率对断裂应变的影响较小. 预制的微孔洞没有改善未极化PZT95/5铁电陶瓷材料的韧性, 这是因为单轴压缩下未极化PZT95/5铁电陶瓷的断裂机理是轴向劈裂破坏, 微孔洞对劈裂裂纹传播没有起到阻碍和分叉作用. 准静态单轴压缩下多孔未极化PZT95/5铁电陶瓷畴变和相变开始的临界应力都随着孔隙率的增大而呈线性衰减, 但相变开始的临界体积应变却不依赖孔隙率.
    Four kinds of unpoled lead zirconate titanate (PZT95/5) ferroelectric ceramics were fabricated in a range of different porosity levels by systematic additions of added pore formers. By using the non-contact digital image correlation (DIC) optical technique to measure the full-field strain, the response of unpoled PZT95/5 ferroelectric ceramics to statically applied uniaxial stresses was investigated. The influences of porosities on the mechanical behavior, domain switching, and phase transformation of the porous unpoled PZT95/5 ferroelectric ceramics were explored. All the measured stress versus strain curves for the tested porous unpoled PZT95/5 ferroelectric ceramic samples can be divided into three stages: the initial linear elastic region, the approximate plateau region, and the second linear elastic region, similar to the behavior of foam or honeycomb materials. However, the deformation mechanism of porous unpoled PZT95/5 ferroelectric ceramics should be attributed to the domain switching and phase transformation processes, but not related to the collapse of voids. With the increase of porosity, the elastic modulus, fracture strength and fracture strain of the porous unpoled PZT95/5 ferroelectric ceramics would decrease. Effect of dispersed voids does not improve plasticity of the porous unpoled PZT95/5 ferroelectric ceramics, which is mainly attributed to no effect of the pores on the obstacle and proliferation of crack propagation during the axial splitting failure processes. Critical stresses of the domain switching and phase transformation decrease linearly with increasing porosity. The macroscopic critical volumetric strain needed for phase transformation is independent of the porosity in the unpoled PZT95/5 ferroelectric ceramics.
    • 基金项目: 国家自然科学基金(批准号:11272164和11472142)和宁波大学王宽诚幸福基金和教育基金会资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272164, 11472142), and the K. C. Wong Magna Foundation and K. C. Wong Education Foundation of Ningbo University.
    [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics(Beijing: Science Press) (in Chinese) [王永龄 2003 功能陶瓷性能与应用(北京: 科学出版社)]

    [3]

    Zeuch D H, Montgomery S T and Holcomb D J 2000 J. Mater. Res. 15 689

    [4]

    Zeuch D H, Montgomery S T and Holcomb D J 1999 J. Mater. Res. 14 1814

    [5]

    Avdeev M, Jorgensen J D, Short S, Samara G A, Venturini E L, Yang P, Morosin B 2006 Phys. Rev. B 73 064105

    [6]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [7]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [8]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Jo H R, Valadez J C, Lynch C S 2014 Appl. Phys. Lett. 104 212901

    [9]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [11]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 物理学报 55 2584]

    [12]

    Nie H C, Dong X L, Feng N B, Chen X F, Wang G S, Gu Y, He H L, Liu Y S 2011 Mater. Res. Bull. 46 1243

    [13]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese) [冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林 2010 物理学报 59 8897]

    [14]

    Zeng T, Dong X L, He H L, Chen X F, Yao C H 2007 Phys. Stat. Sol. 204 1216

    [15]

    Nie H C, Dong X L, Chen X F, Wang G S, He H L 2014 Mater. Res. Bull. 51 167

    [16]

    Lan C H, Peng Y F, Long J D, Wang Q, Wang W D 2011 Chin. Phys. Lett. 28 088301

    [17]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [18]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [19]

    Wang Z Z, Jiang Y X, Zhang P, Wang X Z, He H L 2014 Chin. Phys. Lett. 31 077703

    [20]

    Sutton M A, Orteu J J, Schreier HW 2009 Imgae Correlation for Shape, Motion, and Deformation Measurements p81(New York: Springer)

    [21]

    Gibson L J, Ashby M F 1997 Cellular solids: structure and properties (Second Edition) p83(Cambridge: Press Syndicate of the University of Cambridge)

    [22]

    Li H J, Liu F, Wang T C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 1339

    [23]

    Webber K G, Aulbach E A, Key T, Marsilius M, Granzow T, Rödel J 2009 Acta Mater. 57 4614

    [24]

    Fang D L, Liu J X 2008 Fracture Mechanics of Piezoelectric and Ferroelectric Solids p21( Beijing: Press of University of Tsinghua) (in Chinese) [方岱宁, 刘金喜 2008 压电与铁电体的断裂力学(北京: 清华大学出版社) 第21页]

    [25]

    Demetriou M D, Launey M E, Garrett G 2011 Nature Mater. 10 123

    [26]

    Wada T, Inoue A, and Greer A L 2005 Appl. Phys. Lett. 86 251907

  • [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics(Beijing: Science Press) (in Chinese) [王永龄 2003 功能陶瓷性能与应用(北京: 科学出版社)]

    [3]

    Zeuch D H, Montgomery S T and Holcomb D J 2000 J. Mater. Res. 15 689

    [4]

    Zeuch D H, Montgomery S T and Holcomb D J 1999 J. Mater. Res. 14 1814

    [5]

    Avdeev M, Jorgensen J D, Short S, Samara G A, Venturini E L, Yang P, Morosin B 2006 Phys. Rev. B 73 064105

    [6]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [7]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [8]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Jo H R, Valadez J C, Lynch C S 2014 Appl. Phys. Lett. 104 212901

    [9]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [11]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 物理学报 55 2584]

    [12]

    Nie H C, Dong X L, Feng N B, Chen X F, Wang G S, Gu Y, He H L, Liu Y S 2011 Mater. Res. Bull. 46 1243

    [13]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese) [冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林 2010 物理学报 59 8897]

    [14]

    Zeng T, Dong X L, He H L, Chen X F, Yao C H 2007 Phys. Stat. Sol. 204 1216

    [15]

    Nie H C, Dong X L, Chen X F, Wang G S, He H L 2014 Mater. Res. Bull. 51 167

    [16]

    Lan C H, Peng Y F, Long J D, Wang Q, Wang W D 2011 Chin. Phys. Lett. 28 088301

    [17]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [18]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [19]

    Wang Z Z, Jiang Y X, Zhang P, Wang X Z, He H L 2014 Chin. Phys. Lett. 31 077703

    [20]

    Sutton M A, Orteu J J, Schreier HW 2009 Imgae Correlation for Shape, Motion, and Deformation Measurements p81(New York: Springer)

    [21]

    Gibson L J, Ashby M F 1997 Cellular solids: structure and properties (Second Edition) p83(Cambridge: Press Syndicate of the University of Cambridge)

    [22]

    Li H J, Liu F, Wang T C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 1339

    [23]

    Webber K G, Aulbach E A, Key T, Marsilius M, Granzow T, Rödel J 2009 Acta Mater. 57 4614

    [24]

    Fang D L, Liu J X 2008 Fracture Mechanics of Piezoelectric and Ferroelectric Solids p21( Beijing: Press of University of Tsinghua) (in Chinese) [方岱宁, 刘金喜 2008 压电与铁电体的断裂力学(北京: 清华大学出版社) 第21页]

    [25]

    Demetriou M D, Launey M E, Garrett G 2011 Nature Mater. 10 123

    [26]

    Wada T, Inoue A, and Greer A L 2005 Appl. Phys. Lett. 86 251907

  • [1] 邓珊珊, 宋平, 刘潇贺, 姚森, 赵谦毅. 吉帕级单轴应力下Mn3Sn单晶的磁化率增强. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240287
计量
  • 文章访问数:  4796
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-12
  • 修回日期:  2014-12-31
  • 刊出日期:  2015-07-05

/

返回文章
返回