搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临界转动恒星Achernar的斜压结构与引力昏暗的精细研究

邰丽婷 宋汉峰 王江涛

临界转动恒星Achernar的斜压结构与引力昏暗的精细研究

邰丽婷, 宋汉峰, 王江涛
PDF
导出引用
  • 转动和潮汐效应是影响恒星结构和演化的非常重要的物理因素. 根据对Achernar的观测数据, 用扰动理论推导了临界转动恒星Achernar分别作为单星和双星的斜压结构的特征, 给出Achernar等压面上的密度等物理量的分布. 利用考虑转动和潮汐及形变效应的单、双星模型研究了Achernar的引力昏暗现象. 结果表明正剪切增强离心力、减小赤道的重力加速度和温度, 反剪切结果则与之相反. 反剪切和刚性转动情况并不符合对Achernar的引力昏暗观测结果. 发现转动双星模型比单星模型虽更符合Achernar赤道和极半径之比的观测值, 但理论计算的角速度比观测值小. 对比理论计算和观测结果发现, 当Achernar的自转角速度为4.65 10-5 s-1, 正剪切率/s为0.7851时, Achernar的极点温度为16041 K, 赤道温度为12073 K. 所有理论计算与观测值的相对误差不超过7%.
      通信作者: 宋汉峰, sci.hfsong@gzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11463002)、中国科学院天体结构与演化重点实验室开放课题(批准号: OP201405)和贵州大学研究生创新基金(批准号: 研理工2015055)资助的课题.
    [1]

    Huang R Q, Yu K N 1998 Stellar Astrophysics (New York: Springer Verlag) p313

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq. 4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wen D H, Zhou Y 2013 Chin. Phys. B 22 080401

    [10]

    Zhang J, Wang B, Zhang B, Han Z W 2012 Chin. Phys. Lett. 29 019701

    [11]

    von Zeipel H 1924 Mon. Not. Roy. Astron. Soc. 84 665

    [12]

    de Souza D A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F 2003 Astron. Astrophys. 407 L47

    [13]

    Naz Y 2009 Astron. Astrophys. 506 1055

    [14]

    Jackson S, MacGregor K B, Skumanich A 2004 Astrophys. J. 606 1196

    [15]

    Maeder A, Stahler S 2009 Physics, Formation and Evolution of Rotating Stars (Germany: Springer-Verlag) pp22-24

    [16]

    Kervella P, Domiciano de Souza A D, Bendjoya P 2008 Astron. Astrophys. 484 13

    [17]

    Zorec J, Domiciano de Souza A D, Frmat Y, Vakili F 2005 Semaine de l'Astrophysique Francaise Strasbourg, France, June 27-July 1, 2005 p363

    [18]

    Zhan Q, Song H F, Tai L T,Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [19]

    Zahn J P 2010 Astron. Astrophys. 517 A7

    [20]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [21]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [22]

    Song H F, Zhong Z, Lu Y 2009 Astron. Astrophys. 504 161

    [23]

    Song H F, Lu Y, Wang J Z 2011 Publ. Astron. Soc. Jap. 63 835

    [24]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrm S, Granada A 2013 Astron. Astrophys. 556 A100

    [25]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [26]

    Zhou K, Yang Z Y, Zou D C, Yue R H 2012 Chin. Phys. B 21 020401

    [27]

    Maeder A 1999 Astron. Astrophys. 347 185

    [28]

    Espinosa Lara F, Rieutord M 2011 Astron. Astrophys. 533 A43

    [29]

    Claret A 2012 Astron. Astrophys. 538 A3

    [30]

    de Souza D A, Kervella P, Moser Faes D, Dalla Vedova G, Mrand A, Le Bouquin J B, Espinosa Lara F, Rieutord M, Bendjoya P, Carciofi A C, Hadjara M, Millour F, Vakili F 2014 Astron. Astrophys. 569 A10

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [32]

    Goss K J F, Karoff C, Chaplin W J, Elsworth Y, Stevens I R 2011 Mon. Not. Roy. Astron. Soc. 411 162

  • [1]

    Huang R Q, Yu K N 1998 Stellar Astrophysics (New York: Springer Verlag) p313

    [2]

    Paczynski B 1971 Annu. Rev. Astron. Astrophys. 9 183

    [3]

    Kippenhahn R, Thomas H C 1970 Proceedings of IAU Colloq. 4 Columbus, USA, September 8-11, 1969 p20

    [4]

    Endal A S, Sofia S 1976 Astrophys. J. 210 184

    [5]

    Pinsonneault M H, Kawaler S D, Sofia S, Demarqure P 1989 Astrophys. J. 338 424

    [6]

    Pinsonneault M H, Kawaler S D, Demarqure P 1990 Astrophys. J. Suppl. Ser. 74 501

    [7]

    Pinsonneault M H, Deliyannis C P, Demarqure P 1991 Astrophys. J. 367 239

    [8]

    Song H F, Zhang B, Zhang J, Wu H B, Peng Q H 2003 Chin. Phys. Lett. 20 2084

    [9]

    Wen D H, Zhou Y 2013 Chin. Phys. B 22 080401

    [10]

    Zhang J, Wang B, Zhang B, Han Z W 2012 Chin. Phys. Lett. 29 019701

    [11]

    von Zeipel H 1924 Mon. Not. Roy. Astron. Soc. 84 665

    [12]

    de Souza D A, Kervella P, Jankov S, Abe L, Vakili F, di Folco E, Paresce F 2003 Astron. Astrophys. 407 L47

    [13]

    Naz Y 2009 Astron. Astrophys. 506 1055

    [14]

    Jackson S, MacGregor K B, Skumanich A 2004 Astrophys. J. 606 1196

    [15]

    Maeder A, Stahler S 2009 Physics, Formation and Evolution of Rotating Stars (Germany: Springer-Verlag) pp22-24

    [16]

    Kervella P, Domiciano de Souza A D, Bendjoya P 2008 Astron. Astrophys. 484 13

    [17]

    Zorec J, Domiciano de Souza A D, Frmat Y, Vakili F 2005 Semaine de l'Astrophysique Francaise Strasbourg, France, June 27-July 1, 2005 p363

    [18]

    Zhan Q, Song H F, Tai L T,Wang J T 2015 Acta Phys. Sin. 64 089701 (in Chinese) [詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701]

    [19]

    Zahn J P 2010 Astron. Astrophys. 517 A7

    [20]

    Kopal Z 1959 Close Binary Systems (1st Ed.) (New York: Wiley) p30

    [21]

    Song H F, Wang J Z, Li Y 2013 Acta Phys. Sin. 62 059701 (in Chinese) [宋汉峰, 王靖洲, 李云 2013 物理学报 62 059701]

    [22]

    Song H F, Zhong Z, Lu Y 2009 Astron. Astrophys. 504 161

    [23]

    Song H F, Lu Y, Wang J Z 2011 Publ. Astron. Soc. Jap. 63 835

    [24]

    Song H F, Maeder A, Meynet G, Huang R Q, Ekstrm S, Granada A 2013 Astron. Astrophys. 556 A100

    [25]

    Landin N R, Mendes L T S, Vaz P R 2009 Astron. Astrophys. 494 209

    [26]

    Zhou K, Yang Z Y, Zou D C, Yue R H 2012 Chin. Phys. B 21 020401

    [27]

    Maeder A 1999 Astron. Astrophys. 347 185

    [28]

    Espinosa Lara F, Rieutord M 2011 Astron. Astrophys. 533 A43

    [29]

    Claret A 2012 Astron. Astrophys. 538 A3

    [30]

    de Souza D A, Kervella P, Moser Faes D, Dalla Vedova G, Mrand A, Le Bouquin J B, Espinosa Lara F, Rieutord M, Bendjoya P, Carciofi A C, Hadjara M, Millour F, Vakili F 2014 Astron. Astrophys. 569 A10

    [31]

    Vink J S, de Koter A, Lamers H J G L M 2001 Astron. Astrophys. 369 574

    [32]

    Goss K J F, Karoff C, Chaplin W J, Elsworth Y, Stevens I R 2011 Mon. Not. Roy. Astron. Soc. 411 162

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1786
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-27
  • 修回日期:  2015-12-06
  • 刊出日期:  2016-02-05

临界转动恒星Achernar的斜压结构与引力昏暗的精细研究

  • 1. 贵州大学理学院物理系, 贵阳 550025;
  • 2. 中国科学院天体结构与演化重点实验室, 昆明 650011;
  • 3. 中国科学院国家天文台-贵州大学天文联合研究中心, 贵阳 550025
  • 通信作者: 宋汉峰, sci.hfsong@gzu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 11463002)、中国科学院天体结构与演化重点实验室开放课题(批准号: OP201405)和贵州大学研究生创新基金(批准号: 研理工2015055)资助的课题.

摘要: 转动和潮汐效应是影响恒星结构和演化的非常重要的物理因素. 根据对Achernar的观测数据, 用扰动理论推导了临界转动恒星Achernar分别作为单星和双星的斜压结构的特征, 给出Achernar等压面上的密度等物理量的分布. 利用考虑转动和潮汐及形变效应的单、双星模型研究了Achernar的引力昏暗现象. 结果表明正剪切增强离心力、减小赤道的重力加速度和温度, 反剪切结果则与之相反. 反剪切和刚性转动情况并不符合对Achernar的引力昏暗观测结果. 发现转动双星模型比单星模型虽更符合Achernar赤道和极半径之比的观测值, 但理论计算的角速度比观测值小. 对比理论计算和观测结果发现, 当Achernar的自转角速度为4.65 10-5 s-1, 正剪切率/s为0.7851时, Achernar的极点温度为16041 K, 赤道温度为12073 K. 所有理论计算与观测值的相对误差不超过7%.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回