搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用

李柱松 朱泰山

超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用

李柱松, 朱泰山
PDF
导出引用
导出核心图
  • 层状材料和超晶格结构为提高热电材料和隔热涂层提供了新的设计思路, 并成为最近的研究热点. 应用连续波动方程和线性阻尼理论, 本文研究了此类材料中的声子输运特性. 给出了在整个相空间里的界面调制和声子局域化效应, 得出了超晶格材料热导率的上极限和下极限; 同时, 分析表明界面锐化加强了声子带隙, 使得部分模态的声子局域化加强. 最后, 通过对石墨烯/氮化硼超晶格(G/hBN)和硅/锗超晶格的分子模拟(Si/Ge), 验证了该理论模型. 该方法适用于所有的层状材料和超晶格结构, 对此类新能源材料的设计提供了普适的设计思路.
      通信作者: 李柱松, zhusongli922@gmail.com
    • 基金项目: 国家自然科学基金(批准号: DMR-0934206)资助的课题.
    [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [2]

    Heremans J P, Dresselhaus M S, Bell L E, Morelli D T 2013 Nat. Nanotechnol. 8 471

    [3]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [5]

    Nolas G S, Sharp J, Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer) pp12-23

    [6]

    Tsu R 2011 Superlattice to Nanoelectronics (Boston: Elsevier) pp1-7

    [7]

    Chen G 1997 J. Heat Trans. 119 220

    [8]

    Chen G 1999 J. Heat Trans. 121 945

    [9]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [10]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230

    [11]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [12]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347

    [13]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441

    [14]

    Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421

    [15]

    Zhu T, Ye W 2010 Phys. Rev. E 82 036308

    [16]

    Zhu T, Ye W 2011 Phys. Rev. E 84 056316

    [17]

    Zhu T, Ye W 2010 Num. Heat Trans. B 57 203

    [18]

    Zhu T, Ye W 2012 J. Heat Trans. 134 051013

    [19]

    Guo Z, Xu K 2016 arXiv:1602.01680v1

    [20]

    Liu H, Xu K, Zhu T, Ye W 2012 Comput. Fluids 67 115

    [21]

    Munoz E, Lu H, Yakobson B I 2010 Nano Lett. 10 1652

    [22]

    Hill G W 1886 Acta Math. 8 1

    [23]

    van der Pol B, Strutt M J O 1928 Phil. Mag. 5 18

    [24]

    McLachlan N W 1964 Theory and Applications of Mathieu Functions (New York: Dover) pp11-23

    [25]

    Magnus W, Winkler S 1966 Hill's Equation (New York: Interscience) pp7-13

    [26]

    Lyngby P P 1980 Ingenieur-Archiv. 49 15

    [27]

    Kwong M K, Wong J S W 2006 J. Math. Anal. Appl. 320 37

    [28]

    Ruby L 1996 Am. J. Phys. 64 39

    [29]

    Gutierrez-Vega J C 2003 Am. J. Phys. 71 233

    [30]

    Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp180-182

    [31]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [32]

    Zhu T, Ertekin E 2016 arXiv:1602.02419

    [33]

    Savic I, Donadio D, Gygi F, Galli G 2013 Appl. Phys. Lett. 102 073113

    [34]

    Chalopin Y, Esfarjani K, Henry A, Volz S, Chen G 2012 Phys. Rev. B 85 195302

    [35]

    Zhu T, Ertekin E 2015 Phys. Rev. B 91 205429

    [36]

    Taylor J H, Narendra K S 1969 SIAM J. Appl. Math. 17 343

  • [1]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [2]

    Heremans J P, Dresselhaus M S, Bell L E, Morelli D T 2013 Nat. Nanotechnol. 8 471

    [3]

    Mahan G D, Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436

    [4]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [5]

    Nolas G S, Sharp J, Goldsmid H J 2001 Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer) pp12-23

    [6]

    Tsu R 2011 Superlattice to Nanoelectronics (Boston: Elsevier) pp1-7

    [7]

    Chen G 1997 J. Heat Trans. 119 220

    [8]

    Chen G 1999 J. Heat Trans. 121 945

    [9]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727

    [10]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230

    [11]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [12]

    Li X D, Yu S, Wu S Q, Wen Y H, Zhou S, Zhu Z Z 2013 J. Phys. Chem. C 117 15347

    [13]

    Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441

    [14]

    Lindsay L, Broido D A 2011 Phys. Rev. B 84 155421

    [15]

    Zhu T, Ye W 2010 Phys. Rev. E 82 036308

    [16]

    Zhu T, Ye W 2011 Phys. Rev. E 84 056316

    [17]

    Zhu T, Ye W 2010 Num. Heat Trans. B 57 203

    [18]

    Zhu T, Ye W 2012 J. Heat Trans. 134 051013

    [19]

    Guo Z, Xu K 2016 arXiv:1602.01680v1

    [20]

    Liu H, Xu K, Zhu T, Ye W 2012 Comput. Fluids 67 115

    [21]

    Munoz E, Lu H, Yakobson B I 2010 Nano Lett. 10 1652

    [22]

    Hill G W 1886 Acta Math. 8 1

    [23]

    van der Pol B, Strutt M J O 1928 Phil. Mag. 5 18

    [24]

    McLachlan N W 1964 Theory and Applications of Mathieu Functions (New York: Dover) pp11-23

    [25]

    Magnus W, Winkler S 1966 Hill's Equation (New York: Interscience) pp7-13

    [26]

    Lyngby P P 1980 Ingenieur-Archiv. 49 15

    [27]

    Kwong M K, Wong J S W 2006 J. Math. Anal. Appl. 320 37

    [28]

    Ruby L 1996 Am. J. Phys. 64 39

    [29]

    Gutierrez-Vega J C 2003 Am. J. Phys. 71 233

    [30]

    Kittel C 1996 Introduction to Solid State Physics (New York: Wiley) pp180-182

    [31]

    Simkin M V, Mahan G D 2000 Phys. Rev. Lett. 84 927

    [32]

    Zhu T, Ertekin E 2016 arXiv:1602.02419

    [33]

    Savic I, Donadio D, Gygi F, Galli G 2013 Appl. Phys. Lett. 102 073113

    [34]

    Chalopin Y, Esfarjani K, Henry A, Volz S, Chen G 2012 Phys. Rev. B 85 195302

    [35]

    Zhu T, Ertekin E 2015 Phys. Rev. B 91 205429

    [36]

    Taylor J H, Narendra K S 1969 SIAM J. Appl. Math. 17 343

  • [1] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [2] 王建立, 顾明, 张兴, 熊国平, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [3] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [4] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [5] 许宏, 苑争一, 黄彤飞, 王啸, 陈正先, 韦进, 张翔, 黄元. 层状材料褶皱对几种地质活动机理研究的启示. 物理学报, 2020, 69(2): 026101. doi: 10.7498/aps.69.20190122
    [6] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200007
    [7] 骆军委, 李树深. 半导体材料基因组计划:硅基发光材料. 物理学报, 2015, 64(20): 207803. doi: 10.7498/aps.64.207803
    [8] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究. 物理学报, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [9] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [10] 顾培夫, 陈海星, 秦小芸, 刘 旭. 基于薄膜光子晶体超晶格理论的偏振带通滤波器. 物理学报, 2005, 54(2): 773-776. doi: 10.7498/aps.54.773
    [11] 邓成良, 邵明珠, 罗诗裕. 带电粒子同超晶格的相互作用与系统的混沌行为. 物理学报, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [12] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响. 物理学报, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [13] 蒋雷, 王培吉, 张昌文, 冯现徉, 逯瑶, 张国莲. 超晶格SnO2掺Cr的电子结构和光学性质的研究. 物理学报, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [14] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [15] 张启义, 田强. 超晶格中电场单极畴与偶极畴的形成和输运. 物理学报, 2002, 51(8): 1804-1807. doi: 10.7498/aps.51.1804
    [16] 尚杰, 张辉, 曹明刚, 张鹏翔. 氧压对Ba0.6Sr0.4TiO3薄膜晶格常数的影响及BaTiO3/Ba0.6Sr0.4TiO3超晶格的制备. 物理学报, 2011, 60(1): 016802. doi: 10.7498/aps.60.016802
    [17] 罗晓华. Schrödinger方程的一般解与超晶格多量子阱的电子跃迁. 物理学报, 2014, 63(1): 017302. doi: 10.7498/aps.63.017302
    [18] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [19] 刘延飞, 陈诚, 杨东东, 李修建. 基于GaAs/Al0.45Ga0.55As超晶格芯片自发混沌振荡的8Gb/s物理真随机数实现. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200136
    [20] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
  • 引用本文:
    Citation:
计量
  • 文章访问数:  472
  • PDF下载量:  1188
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-22
  • 修回日期:  2016-03-25
  • 刊出日期:  2016-06-05

超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用

  • 1. 耶鲁大学材料科学与机械工程系, 美国, 纽黑文市 06520;
  • 2. 纽约城市大学物理系, 列维奇本杰明研究所, 美国, 纽约 10031
  • 通信作者: 李柱松, zhusongli922@gmail.com
    基金项目: 

    国家自然科学基金(批准号: DMR-0934206)资助的课题.

摘要: 层状材料和超晶格结构为提高热电材料和隔热涂层提供了新的设计思路, 并成为最近的研究热点. 应用连续波动方程和线性阻尼理论, 本文研究了此类材料中的声子输运特性. 给出了在整个相空间里的界面调制和声子局域化效应, 得出了超晶格材料热导率的上极限和下极限; 同时, 分析表明界面锐化加强了声子带隙, 使得部分模态的声子局域化加强. 最后, 通过对石墨烯/氮化硼超晶格(G/hBN)和硅/锗超晶格的分子模拟(Si/Ge), 验证了该理论模型. 该方法适用于所有的层状材料和超晶格结构, 对此类新能源材料的设计提供了普适的设计思路.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回