搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光

谢仕永 张小富 乐小云 杨程亮 薄勇 王鹏远 许祖彦

引用本文:
Citation:

885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光

谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦

A quasi-continuous dual-end 885 nm diode-pumped three-mirror ring-cavity laser operating at 1319 nm

Xie Shi-Yong, Zhang Xiao-Fu, Le Xiao-Yun, Yang Cheng-Liang, Bo Yong, Wang Peng-Yuan, Xu Zu-Yan
PDF
导出引用
  • 采用885 nm半导体激光双端泵Nd:YAG三镜环形腔获取高功率、高光束质量、可调谐的准连续微秒脉冲1319 nm激光. 通过腔镜镀膜和腔内插入标准具,分别抑制Nd:YAG的1064 nm与1338 nm谱线起振. 薄膜偏振片用作环形腔的输出镜,与半波片配合实现输出耦合率连续可调. 885 nm抽运功率150 W时,在热近非稳腔运转条件下获得重复频率800 Hz、脉冲宽度150 s、 平均功率22.5 W的1319 nm偏振激光输出,光束质量因子Mx2= 1.35,My2=1.24. 腔内插入1319 nm的倍频晶体KTiOPO4,通过二次谐波效应使高强度的尖峰脉冲序列减弱,实现激光脉冲弛豫振荡的有效抑制. 精确控制标准具温度,实现激光波长从1318.888 nm精细调谐到1319.358 nm,调谐范围为470 pm(81 GHz),相应的调谐精度为0.7 pm(125 MHz).
    The 1319 nm lasers have important applications in the fields of optical fiber communication, laser medical treatment and laser color display. The Nd:YAG laser pumped by 808 nm laser diode is an efficient alternative to achieving 1319 nm laser output. In recent years, direct pump technology using 885 nm laser diodes has become more promising due to the dramatically reduced thermal effect and improved optical conversion efficiency. Quasi-continuous sodium beacon laser with microsecond pulse duration generated by the sum-frequency of 1319 nm and 1064 nm lasers can provide a gatable pulse format to eliminate the interference of atmospheric Rayleigh scattering and mitigate the spot elongation of sodium guide star to improve imaging accuracy. However, relaxation oscillation in the microsecond pulse could cause the damage to the nonlinear crystal and reduce the efficiency of sum-frequency generation. It is effective to suppress the relaxation by taking advantage of second harmonic generation, in which a nonlinear crystal is utilized to reduce the pulse peaks with higher intensity. In this paper, we demonstrate a high-power relaxation-oscillation-free quasi-continuous microsecond pulse 1319 nm laser by using the dual-end 885 nmdiode-pumped three-mirror ring-cavity. Intra-cavity etalon and customized mirror coating are employed to prevent the 1064 nmand 1338 nmline of Nd:YAG laser crystal from oscillating. A power tuning device, including a thin-film polarizer and a halfwave plate is implemented as the output mirror of ring cavity, which enables continuous adjustment of the out coupling ratio. The output power of the 1319 nm polarized laser is 22.5 W pumped by 150 W 885 nm laser diode. The repetition rate is 800 Hz and pulse width is 150 s. The corresponding optical conversion efficiency is 15%. The beam quality factor M2 is measured to be Mx2= 1.35 and My2=1.24. By precisely adjusting the temperature of etalon viz. adjusting refractive index as well as thickness of the etalon material, laser wavelength is tuned from 1318.888 nm to 1319.358 nm, corresponding to a tunable range of 470 pm and tuning accuracy of 0.7 pm. A 1319 nm frequency doubling crystal KTiOPO4 (5 mm5 mm15 mm, = 59:8 and ϕ = 0) is inserted into the cavity to suppress the relaxation oscillation. The pulse waveform quickly reaches a smooth regime, followed by a pulse spike at the initial stage and the loss of laser output power is only 1%. It is proved that it can be efficiently suppressed by inserting a frequency doubling crystal with negligible power loss. In conclusion, this paper provides a practical and effective technical means for achieving the high-power relaxation-oscillation-free quasi-continuous 1319 nm laser with microsecond pulse duration.
      通信作者: 张小富, xfzhang@buaa.edu.cn
    • 基金项目: 应用光学国家重点实验室开放基金、国家自然科学基金(批准号:61205101)和深圳市科技计划项目(批准号:GJHZ20140417113430592,JCYJ20140417113130693,JCYJ20150925163313898)资助的课题.
      Corresponding author: Zhang Xiao-Fu, xfzhang@buaa.edu.cn
    • Funds: Project supported by the State Key Laboratory of Applied Optics, National Natural Science Foundation of China (Grant No. 61205101) and Shenzhen Science and Technology Project (Grant Nos. GJHZ20140417113430592, JCYJ20140417113130693, JCYJ20150925163313898).
    [1]

    Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2010 Chin. Phys. B 19 64208

    [2]

    Lian W Y, Zhou Y, Wang T Y, Zhang G Z, Xiang W H 2007 Laser { Infrared 37 508 (in Chinese) [廉伟艳, 周瑜, 王廷营, 张贵忠, 向望华 2007 激光与红外 37 508]

    [3]

    Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Chen J, Chen W D, Chen Z Q 2007 Appl. Opt. 46 384

    [4]

    Wang T, Yao J Q, Zhao P, Cai B J, Wang P 2005 Proc. SPIE 5627 121

    [5]

    Sun Z P, Li R N, Bi Y, Yang Y D, Bo Y, Hou W, Lin X C, Zhang H B, Cui D F, Xu Z Y 2004 Opt. Express 12 6428

    [6]

    Mu X D, Ding Y J 2005 Opt. Lett. 30 1372

    [7]

    Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844

    [8]

    Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230 (in Chinese) [刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 物理学报 57 230]

    [9]

    Lu Y F, Xie S Y, Bo Y, Cui Q J, Zong N, Gao H W, Peng Q J, Cui D F, Xu Z Y 2009 Acta Phys. Sin. 58 970 (in Chinese) [鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦 2009 物理学报 58 970]

    [10]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 94208

    [11]

    Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202

    [12]

    Lu J H, Lu J R, Murai T, Takaichi K, Uematsu T, Xu J Q, Ueda K, Yagi H, Yanagitani T, Kaminskii A A 2002 Opt. Lett. 27 1120

    [13]

    Li N, Pang Y, Lu Y H, Zhang L, Xie G, Wang W M, Xu X X {2013 Chin. J. Lasers 40 0802007 (in Chinese) [李楠, 庞毓, 鲁燕华, 张雷, 谢刚, 王卫民, 许晓小 2013 中国激光 40 0802007]

    [14]

    Lavi R, Jackel S, Tal A, Lebiush E, Tzuk Y, Goldring S 2001 Opt. Commun. 195 427

    [15]

    L Y F, Zhao L S, Zhai P, Xia J, Li S T, Fu X H 2012 Opt. Lett. 37 3177

    [16]

    Li M L, Zhao W F, Zhang S B, Guo L, Hou W, Li J M, Lin X C 2012 Appl. Opt. 51 1241

    [17]

    L Y F, Zhang X H, Xia J, Yin X D, Bao L, Quan H {2010 Laser Phys. 2 200

    [18]

    Xu Z Y, Xie S Y, Bo Y, Zuo J W, Wang B S, Wang P Y, Wang Z C, Liu Y, Xu Y T, Xu J L, Peng Q J, Cui D F {2011 Acta Opt. Sin. 31 0900111 (in Chinese) [许祖彦, 谢仕永, 薄勇, 左军卫, 王保山, 王鹏远, 王志超, 刘苑, 徐一汀, 许家林, 彭钦军, 崔大复 2011 光学学报 31 0900111]

    [19]

    Jeys T H 1991 Appl. Opt. 30 1011

    [20]

    Johnson R P 2008 Opt. { Laser Technol. 40 1078

    [21]

    Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]

  • [1]

    Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2010 Chin. Phys. B 19 64208

    [2]

    Lian W Y, Zhou Y, Wang T Y, Zhang G Z, Xiang W H 2007 Laser { Infrared 37 508 (in Chinese) [廉伟艳, 周瑜, 王廷营, 张贵忠, 向望华 2007 激光与红外 37 508]

    [3]

    Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Chen J, Chen W D, Chen Z Q 2007 Appl. Opt. 46 384

    [4]

    Wang T, Yao J Q, Zhao P, Cai B J, Wang P 2005 Proc. SPIE 5627 121

    [5]

    Sun Z P, Li R N, Bi Y, Yang Y D, Bo Y, Hou W, Lin X C, Zhang H B, Cui D F, Xu Z Y 2004 Opt. Express 12 6428

    [6]

    Mu X D, Ding Y J 2005 Opt. Lett. 30 1372

    [7]

    Lin B, Xiao K, Zhang Q L, Zhang D X, Feng B H, Li Q N, He J L 2016 Appl. Opt. 55 1844

    [8]

    Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230 (in Chinese) [刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 物理学报 57 230]

    [9]

    Lu Y F, Xie S Y, Bo Y, Cui Q J, Zong N, Gao H W, Peng Q J, Cui D F, Xu Z Y 2009 Acta Phys. Sin. 58 970 (in Chinese) [鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦 2009 物理学报 58 970]

    [10]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 94208

    [11]

    Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202

    [12]

    Lu J H, Lu J R, Murai T, Takaichi K, Uematsu T, Xu J Q, Ueda K, Yagi H, Yanagitani T, Kaminskii A A 2002 Opt. Lett. 27 1120

    [13]

    Li N, Pang Y, Lu Y H, Zhang L, Xie G, Wang W M, Xu X X {2013 Chin. J. Lasers 40 0802007 (in Chinese) [李楠, 庞毓, 鲁燕华, 张雷, 谢刚, 王卫民, 许晓小 2013 中国激光 40 0802007]

    [14]

    Lavi R, Jackel S, Tal A, Lebiush E, Tzuk Y, Goldring S 2001 Opt. Commun. 195 427

    [15]

    L Y F, Zhao L S, Zhai P, Xia J, Li S T, Fu X H 2012 Opt. Lett. 37 3177

    [16]

    Li M L, Zhao W F, Zhang S B, Guo L, Hou W, Li J M, Lin X C 2012 Appl. Opt. 51 1241

    [17]

    L Y F, Zhang X H, Xia J, Yin X D, Bao L, Quan H {2010 Laser Phys. 2 200

    [18]

    Xu Z Y, Xie S Y, Bo Y, Zuo J W, Wang B S, Wang P Y, Wang Z C, Liu Y, Xu Y T, Xu J L, Peng Q J, Cui D F {2011 Acta Opt. Sin. 31 0900111 (in Chinese) [许祖彦, 谢仕永, 薄勇, 左军卫, 王保山, 王鹏远, 王志超, 刘苑, 徐一汀, 许家林, 彭钦军, 崔大复 2011 光学学报 31 0900111]

    [19]

    Jeys T H 1991 Appl. Opt. 30 1011

    [20]

    Johnson R P 2008 Opt. { Laser Technol. 40 1078

    [21]

    Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]

  • [1] 郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰. GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器. 物理学报, 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [2] 刘鸿志, 王宇恒, 郑浩, 赵云峰, 于永吉, 金光勇. 双端泵浦Nd3+掺杂MgO:LiNbO3正交偏振双波长连续激光调控. 物理学报, 2021, 70(18): 184203. doi: 10.7498/aps.70.20210449
    [3] 王永胜, 赵彤, 王安帮, 张明江, 王云才. 大幅度增加弛豫振荡频率来实现毫米级外腔半导体激光器的外腔机制转换. 物理学报, 2017, 66(23): 234204. doi: 10.7498/aps.66.234204
    [4] 周静, 王鸣, 倪海彬, 马鑫. 环形狭缝腔阵列光学特性的研究. 物理学报, 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [5] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [6] 谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂. 基于单波长外腔共振和频技术产生波长可调谐589 nm激光及钠原子饱和荧光谱的测量. 物理学报, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [7] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究. 物理学报, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [8] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [9] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究. 物理学报, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [10] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [11] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器. 物理学报, 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [12] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [13] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究. 物理学报, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [14] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究. 物理学报, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [15] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究. 物理学报, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [16] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [17] 王 健, 孙军强, 郭永娟, 李 婧, 孙琪真. 新型双环腔结构可调谐全光波长转换器的实验研究. 物理学报, 2007, 56(6): 3251-3254. doi: 10.7498/aps.56.3251
    [18] 郭永娟, 孙军强, 王 健, 李 婧. 基于光纤环形腔激光器的可调谐全光波长转换器的研究. 物理学报, 2007, 56(8): 4602-4607. doi: 10.7498/aps.56.4602
    [19] 冯志芳, 王义全, 冯 帅, 程丙英, 张道中. 干涉原理在光子晶体中的应用. 物理学报, 2005, 54(4): 1583-1586. doi: 10.7498/aps.54.1583
    [20] 徐 帆, 张新亮, 黄德修. 新型结构可调谐全光波长转换器的理论与实验研究. 物理学报, 2004, 53(7): 2165-2169. doi: 10.7498/aps.53.2165
计量
  • 文章访问数:  5241
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-25
  • 修回日期:  2016-05-19
  • 刊出日期:  2016-08-05

/

返回文章
返回