搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdxZn1-xO合金热力学性质的第一性原理研究

罗明海 黎明锴 朱家昆 黄忠兵 杨辉 何云斌

CdxZn1-xO合金热力学性质的第一性原理研究

罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌
PDF
导出引用
导出核心图
  • ZnO的能带工程是当前ZnO研究的热点之一. 通过等价阳离子如Cd,Be,Mg等部分取代Zn形成CdZnO,BeZnO,MgZnO等合金来调控ZnO带隙的研究已广泛开展. 其中,Cd的掺杂可以减小ZnO的禁带宽度,使CdZnO合金在紫外-可见光波段光电器件中具有潜在的应用价值. 本文利用第一性原理计算结合集团展开法,通过研究纤锌矿(WZ)和岩盐矿(RS)型CdxZn1-xO合金不同Cd掺杂含量下各种构型的形成能,发现了纤锌矿结构的两种亚稳相Cd1/3Zn2/3O,Cd2/3Zn1/3O;对其晶格常数、键长、键角和电子结构的分析表明,随着Cd掺杂量的增大,晶格常数a,c均逐渐增大,而c/a值逐渐减小,O-Zn(Cd)-O键角及合金禁带宽度均逐渐减小. 通过对CdxZn1-xO合金的有效集团交互系数的分析得出,两个原子组成的集团中其有效集团交互系数最大,表明两原子集团对用集团展开法计算的形成能贡献最大. 通过比较第一性原理计算的形成能和集团展开法拟合计算得到的形成能,发现两者相差很小,表明采用集团展开法拟合计算CdxZn1-xO合金的形成能准确、可靠. 通过对大量CdxZn1-xO合金的形成能分析发现,大部分CdxZn1-xO的形成能比同组分的ZnO 与CdO混合相的能量高,表明ZnO和CdO互溶时会形成固溶度间隙,低温下难以实现全组分固溶. 在此基础上,我们计算了WZ-和RS-CdxZn1-xO随机合金的形成能并得到了相图. 对于纤锌矿结构,其临界温度为1000 K;对于岩盐矿结构,其临界温度为2250 K. 更高的临界温度表明CdxZn1-xO难以形成岩盐矿结构的合金. 进一步计算获得WZ-和RS-CdxZn1-xO的两相相图,发现Cd较易固溶于WZ-ZnO中,而Zn较难固溶于RS-CdO中.
      通信作者: 何云斌, ybhe@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51572073,61274010,11574074)、湖北省自然科学基金(批准号:2015CFB265,2015CFA038)和教育部高等学校博士学科点专项科研基金(批准号:20124208110005,20124208120006)资助的课题.
    [1]

    Yang W F, Chen R, Liu B, Wong L M, Wang S J, Sun H D 2011 J. Appl. Phys. 109 113521

    [2]

    Sadofev S, Blumstengel S, Cui J, Puls J, Rogaschewski S, Schaefer P, Henneberger F 2006 Appl. Phys. Lett. 89 201907

    [3]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M {2005 Nat. Mater. 4 42

    [4]

    Chung K, Lee C, Yi G C 2010 Science 330 655

    [5]

    Ma X Y, Chen P L, Zhang R J, Yang D R 2011 J. Alloys. Compd. 509 6599

    [6]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237

    [7]

    Bertram F, Giemsch S, Forster D, Christen J, Kling R, Kirchner C, Waag A 2006 Appl. Phys. Lett. 88 061915

    [8]

    Sakurai K, Takagi T, Kubo T, Kajita D, Tanabe T, Takasu H, Fujita S, Fujita S 2002 J. Cryst. Growth 237-239 514

    [9]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N, 2007 Solid State Commun. 144 5

    [10]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 1066]

    [11]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys.: Condens. Matter 20 235221

    [12]

    Ravi C, Sahu H K, Valsakumar M C, van de Walle A 2010 Phys. Rev. B 81 104111

    [13]

    Hohenberg P, Kohn W {1964 Phys. Rev. B 136 B864

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M 2009 J. Phys.: Condens. Matter 21 395502

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [18]

    Van de Walle A, Asta M, Ceder G 2002 CALPHAD 26 539

    [19]

    Yin W J, Dai L L, Zhang L, Yang R, Li L W, Guo T, Yan Y F 2014 J. Appl. Phys. 115 023707

    [20]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Zeng X C, Pan B C 2015 Nanoscale 7 9852

    [21]

    Pu C Y, Tang X, L H F, Zhang Q Y 2011 Acta Phys. Sin. 60 037101 (in Chinese) [濮春英, 唐鑫, 吕海峰, 张庆瑜 2011 物理学报 60 037101]

    [22]

    Ravi C, Panigrahi B K, Valsakumar M C, van de Walle A 2012 Phys. Rev. B 85 054202

    [23]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [24]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [25]

    Jaffe J, Snyder J, Lin Z, Hess A {2000 Phys. Rev. B 62 1660

    [26]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [27]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109

    [28]

    Kuisma M, Ojanen J, Enkovaara J, Rantalal T T 2010 Phys. Rev. B 82 115106

    [29]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys.-Chim. Sin. 24 1233 (in Chinese) [孙慧卿, 丁少锋, 王雨田, 邓贝, 范广涵 2008 物理化学学报 24 1233]

    [30]

    Powell R A, Spicer W E, McMenamin J C 1971 Phys. Rev. Lett. 27 97

    [31]

    Kang H S, Lim S H, Kim J W, Chang H W, Kim G H, Kim J H, Lee S Y, Li Y, Lee J S, Lee J K, Nastasi M A, Crooker S A, Jia Q X 2006 J. Cryst. Growth 287 70

    [32]

    Liu J Z, Van de Walle A, Ghosh G, Asta M 2005 Phys. Rev. B 72 144109

    [33]

    Gan C K, Fan X F, Kuo J L 2010 Comp. Mater. Sci. 49 S29

    [34]

    Madelung O M 2004 Semiconductors: Data Handbook (Berlin: Springer) pp173-241

  • [1]

    Yang W F, Chen R, Liu B, Wong L M, Wang S J, Sun H D 2011 J. Appl. Phys. 109 113521

    [2]

    Sadofev S, Blumstengel S, Cui J, Puls J, Rogaschewski S, Schaefer P, Henneberger F 2006 Appl. Phys. Lett. 89 201907

    [3]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M {2005 Nat. Mater. 4 42

    [4]

    Chung K, Lee C, Yi G C 2010 Science 330 655

    [5]

    Ma X Y, Chen P L, Zhang R J, Yang D R 2011 J. Alloys. Compd. 509 6599

    [6]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237

    [7]

    Bertram F, Giemsch S, Forster D, Christen J, Kling R, Kirchner C, Waag A 2006 Appl. Phys. Lett. 88 061915

    [8]

    Sakurai K, Takagi T, Kubo T, Kajita D, Tanabe T, Takasu H, Fujita S, Fujita S 2002 J. Cryst. Growth 237-239 514

    [9]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N, 2007 Solid State Commun. 144 5

    [10]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 物理学报 57 1066]

    [11]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys.: Condens. Matter 20 235221

    [12]

    Ravi C, Sahu H K, Valsakumar M C, van de Walle A 2010 Phys. Rev. B 81 104111

    [13]

    Hohenberg P, Kohn W {1964 Phys. Rev. B 136 B864

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M 2009 J. Phys.: Condens. Matter 21 395502

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [18]

    Van de Walle A, Asta M, Ceder G 2002 CALPHAD 26 539

    [19]

    Yin W J, Dai L L, Zhang L, Yang R, Li L W, Guo T, Yan Y F 2014 J. Appl. Phys. 115 023707

    [20]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Zeng X C, Pan B C 2015 Nanoscale 7 9852

    [21]

    Pu C Y, Tang X, L H F, Zhang Q Y 2011 Acta Phys. Sin. 60 037101 (in Chinese) [濮春英, 唐鑫, 吕海峰, 张庆瑜 2011 物理学报 60 037101]

    [22]

    Ravi C, Panigrahi B K, Valsakumar M C, van de Walle A 2012 Phys. Rev. B 85 054202

    [23]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [24]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [25]

    Jaffe J, Snyder J, Lin Z, Hess A {2000 Phys. Rev. B 62 1660

    [26]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [27]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109

    [28]

    Kuisma M, Ojanen J, Enkovaara J, Rantalal T T 2010 Phys. Rev. B 82 115106

    [29]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys.-Chim. Sin. 24 1233 (in Chinese) [孙慧卿, 丁少锋, 王雨田, 邓贝, 范广涵 2008 物理化学学报 24 1233]

    [30]

    Powell R A, Spicer W E, McMenamin J C 1971 Phys. Rev. Lett. 27 97

    [31]

    Kang H S, Lim S H, Kim J W, Chang H W, Kim G H, Kim J H, Lee S Y, Li Y, Lee J S, Lee J K, Nastasi M A, Crooker S A, Jia Q X 2006 J. Cryst. Growth 287 70

    [32]

    Liu J Z, Van de Walle A, Ghosh G, Asta M 2005 Phys. Rev. B 72 144109

    [33]

    Gan C K, Fan X F, Kuo J L 2010 Comp. Mater. Sci. 49 S29

    [34]

    Madelung O M 2004 Semiconductors: Data Handbook (Berlin: Springer) pp173-241

  • [1] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究. 物理学报, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [2] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [3] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [4] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [5] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [6] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [7] 郭 进, 黎光旭, 黄 丹, 邵元智, 陈弟虎. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [8] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [9] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [10] 郝红飞, 王静, 孙锋, 张澜庭. Dy在Nd2Fe14B晶格中的占位及其对Fe原子磁矩影响的第一性原理计算. 物理学报, 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [11] 耶红刚, 陈光德, 竹有章, 张俊武. 六方AlN本征缺陷的第一性原理研究. 物理学报, 2007, 56(9): 5376-5381. doi: 10.7498/aps.56.5376
    [12] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [13] 张伟, 徐朝鹏, 王海燕, 陈飞鸿, 何畅. 碘化铟晶体本征缺陷的第一性原理研究. 物理学报, 2013, 62(24): 243101. doi: 10.7498/aps.62.243101
    [14] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [15] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [16] 马爽, 乌仁图雅, 特古斯, 武晓霞, 管鹏飞, 那日苏. FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究. 物理学报, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [17] 刘颖, 刘显坤, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [18] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [19] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
  • 引用本文:
    Citation:
计量
  • 文章访问数:  493
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-22
  • 修回日期:  2016-05-31
  • 刊出日期:  2016-08-05

CdxZn1-xO合金热力学性质的第一性原理研究

  • 1. 有机化工新材料湖北省协同创新中心, 功能材料绿色制备与应用教育部重点实验室, 湖北大学材料科学与工程学院, 武汉 430062;
  • 2. 湖北大学物理与电子技术学院, 武汉 430062
  • 通信作者: 何云斌, ybhe@hubu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51572073,61274010,11574074)、湖北省自然科学基金(批准号:2015CFB265,2015CFA038)和教育部高等学校博士学科点专项科研基金(批准号:20124208110005,20124208120006)资助的课题.

摘要: ZnO的能带工程是当前ZnO研究的热点之一. 通过等价阳离子如Cd,Be,Mg等部分取代Zn形成CdZnO,BeZnO,MgZnO等合金来调控ZnO带隙的研究已广泛开展. 其中,Cd的掺杂可以减小ZnO的禁带宽度,使CdZnO合金在紫外-可见光波段光电器件中具有潜在的应用价值. 本文利用第一性原理计算结合集团展开法,通过研究纤锌矿(WZ)和岩盐矿(RS)型CdxZn1-xO合金不同Cd掺杂含量下各种构型的形成能,发现了纤锌矿结构的两种亚稳相Cd1/3Zn2/3O,Cd2/3Zn1/3O;对其晶格常数、键长、键角和电子结构的分析表明,随着Cd掺杂量的增大,晶格常数a,c均逐渐增大,而c/a值逐渐减小,O-Zn(Cd)-O键角及合金禁带宽度均逐渐减小. 通过对CdxZn1-xO合金的有效集团交互系数的分析得出,两个原子组成的集团中其有效集团交互系数最大,表明两原子集团对用集团展开法计算的形成能贡献最大. 通过比较第一性原理计算的形成能和集团展开法拟合计算得到的形成能,发现两者相差很小,表明采用集团展开法拟合计算CdxZn1-xO合金的形成能准确、可靠. 通过对大量CdxZn1-xO合金的形成能分析发现,大部分CdxZn1-xO的形成能比同组分的ZnO 与CdO混合相的能量高,表明ZnO和CdO互溶时会形成固溶度间隙,低温下难以实现全组分固溶. 在此基础上,我们计算了WZ-和RS-CdxZn1-xO随机合金的形成能并得到了相图. 对于纤锌矿结构,其临界温度为1000 K;对于岩盐矿结构,其临界温度为2250 K. 更高的临界温度表明CdxZn1-xO难以形成岩盐矿结构的合金. 进一步计算获得WZ-和RS-CdxZn1-xO的两相相图,发现Cd较易固溶于WZ-ZnO中,而Zn较难固溶于RS-CdO中.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回