搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中纬度地区电离层偶发E层对量子卫星通信性能的影响

聂敏 唐守荣 杨光 张美玲 裴昌幸

中纬度地区电离层偶发E层对量子卫星通信性能的影响

聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸
PDF
导出引用
导出核心图
  • 电离层偶发E层是指在距离地面高度80150 km之间,在风剪切作用下,电子密度急剧增加的不规则电离薄层,它会对量子卫星光信号的传输造成极大的影响.然而,有关电离层偶发E层与星地间量子通信信道参数关系的研究,迄今尚未展开.为了研究偶发E层对量子卫星通信性能的影响,首先分析了它的形成过程,得出自由电子密度随高度变化的关系;然后建立了自由电子密度、偶发E层的厚度对量子卫星链路衰减的模型;针对振幅阻尼信道,给出自由电子密度对信道容量、纠缠保真度、误码率和安全密钥产生率的定量关系.理论分析和仿真结果表明,当偶发E层的厚度为1 km、电子密度由3105 cm-1增加到27105 cm-1时,信道容量由0.8304衰减到0.1319,纠缠保真度由0.9386下降到0.3606,量子误码率由0.0093增加到0.0769,安全密钥产生率由9.96810-5减小到1.9110-6.由此可见,电子密度的大小和偶发E层的厚度对量子卫星通信性能有显著的影响.因此,在进行量子卫星通信时,应根据对电离层参数的探测情况,自适应调整卫星系统的各项指标,以确保量子通信的可靠性.
      通信作者: 唐守荣, 1257113655@qq.com
    • 基金项目: 国家自然科学基金(批准号:61172071,61201194)、陕西省自然科学基础研究计划(批准号:2014JQ8318)、陕西省国际科技合作与交流计划项目(批准号:2015KW-013)和陕西省教育厅科研计划项目(项目编号是:16JK1711)资助的课题.
    [1]

    Bao X H, Reingruber A, Dietrich P, RuiJ, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [2]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nat. Photon. 7 387

    [3]

    Bruschi D E, Barlow T M, Razavi M, Beige A 2014 Phys. Rev. A 90 22232

    [4]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [5]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese)[聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸2014物理学报63 240303]

    [6]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese)[聂敏, 任杰, 杨光, 张美玲, 裴昌幸2015物理学报64 150301]

    [7]

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0927004 (in Chinese)[聂敏, 任家明, 杨光, 张美玲, 裴昌幸2016光子学报45 0927004]

    [8]

    Ippolito Jr L J (translated by Sun B S) 2012 Satellite Communications Systems Engineering (Beijing:National Defense Industry Press) pp91-100(in Chinese)[伊波利托著(孙宝升译) 2012卫星通信系统工程(北京:国防工业出版社)第91100页]

    [9]

    Xu Z W 2005 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[许正文2005博士论文(西安:西安电子科技大学)]

    [10]

    Pancheva D, Haldoupis C, Meek C E, Manson A H, Mitchell N J 2003 J. Geophys. Res. 108SIA 9-1

    [11]

    Bailey S M Barth C A Solomon S C 2002 J. Geophys. Res. 107 SIA 22-1

    [12]

    Pietrella M, Pezzopane M, Bianchi C 2014 Adv. Space Res. 54 150

    [13]

    Sun L F, Zhao B Q, Yue X A, Mao T 2014 Chin. J. Geophys. -CH 57 3625

    [14]

    Maeda J, Heki K 2015 Earth, Planets and Space 64 1

    [15]

    Williams B P, Berkey F T Sherman J, She C Y 2007 Annal. Geophys. 25 3

    [16]

    Tan H 2000 Chin. J. Space Sci. 20 373 (in Chinese)[谭辉2000空间科学学报20 373]

    [17]

    Matsushita S, Reddy C A 1967 J. Geophys. Res. 72 2903

    [18]

    Xiong N L, Tang C C, Li X J 1999 Introduction to the Physics of the Ionosphere (Wuhan:Wuhan University Press) pp276-290(in Chinese)[熊年禄, 唐存琛, 李行健1999电离层物理概论(武汉:武汉大学出版社)第276290页]

    [19]

    He L, Guo L, Li J 2014 Antenn. Propag. IEEE 52 724

    [20]

    Zhao J Z 2014 Aeronomy (Vol.1)(rearrangement) (Beijing:Peking University Press) pp168-172(in Chinese)[赵九章2014高空大气物理学(上册) (重排本) (北京:北京大学出版社)第168172页]

    [21]

    Yuan Z C, Shi J M 2005 Microw. J. 21 49 (in Chinese)[袁忠才, 时家明2005微波学报21 49]

    [22]

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing:Publishing House of Electronics Industry) pp76-103(in Chinese)[尹浩, 韩阳2013量子通信原理与技术(北京:电子工业出版社)第76130页]

    [23]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing:Military Science Press) pp49(in Chinese)[尹浩, 马怀新2006军事量子通信概论(北京:军事科学出版社)第49页]

    [24]

    Zhang D Y 2013 Quantum Logic Gates and Quantum Decoherence (Beijing:Science Press) pp90-110(in Chinese)[张登玉2013量子逻辑门与量子退相干(北京:科学出版社)第90110页]

    [25]

    Zhang Y D 2010 Quantum Mechanics (Beijing:Science Press) pp343-347(in Chinese)[张永德2010量子力学(北京:科学出版社)第343347页]

    [26]

    Zhang Y D 2005 Principles of Quantum Information Physics (Beijing:Science Press) pp125-151(in Chinese)[张永德2005量子信息物理原理(北京:科学出版社)第125151页]

    [27]

    Li K 2009 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[李科2009博士论文(合肥:中国科技大学)]

    [28]

    Nielsen A, Chuang I (translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol.2) (Beijing:Tsinghua University Press) pp64-71(in Chinese)[尼尔森, 庄著(郑大钟, 赵千川译) 2005量子计算和量子信息(二) (北京:清华大学出版社)第6471页]

    [29]

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302 (in Chinese)[吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明2016物理学报65 100302]

    [30]

    Gu Y B, Bao W S, Wang Y, Zhou C 2016 Chin. Phys. Lett. 33 040301

    [31]

    Wu J R 2011 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[吴建荣2011博士论文(合肥:中国科技大学)]

    [32]

    Dong C, Zhao S H, Zhao W H, Shi L, Zhao G H 2014 Acta Phys. Sin. 63 030302 (in Chinese)[东晨, 赵尚弘, 赵卫虎, 石磊, 赵顾颢2014物理学报63 030302]

    [33]

    Ma X F, Fung F C H, Razavi M 2012 Phys. Rev. A 86 052305

  • [1]

    Bao X H, Reingruber A, Dietrich P, RuiJ, Dck A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517

    [2]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nat. Photon. 7 387

    [3]

    Bruschi D E, Barlow T M, Razavi M, Beige A 2014 Phys. Rev. A 90 22232

    [4]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516

    [5]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese)[聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸2014物理学报63 240303]

    [6]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese)[聂敏, 任杰, 杨光, 张美玲, 裴昌幸2015物理学报64 150301]

    [7]

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0927004 (in Chinese)[聂敏, 任家明, 杨光, 张美玲, 裴昌幸2016光子学报45 0927004]

    [8]

    Ippolito Jr L J (translated by Sun B S) 2012 Satellite Communications Systems Engineering (Beijing:National Defense Industry Press) pp91-100(in Chinese)[伊波利托著(孙宝升译) 2012卫星通信系统工程(北京:国防工业出版社)第91100页]

    [9]

    Xu Z W 2005 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[许正文2005博士论文(西安:西安电子科技大学)]

    [10]

    Pancheva D, Haldoupis C, Meek C E, Manson A H, Mitchell N J 2003 J. Geophys. Res. 108SIA 9-1

    [11]

    Bailey S M Barth C A Solomon S C 2002 J. Geophys. Res. 107 SIA 22-1

    [12]

    Pietrella M, Pezzopane M, Bianchi C 2014 Adv. Space Res. 54 150

    [13]

    Sun L F, Zhao B Q, Yue X A, Mao T 2014 Chin. J. Geophys. -CH 57 3625

    [14]

    Maeda J, Heki K 2015 Earth, Planets and Space 64 1

    [15]

    Williams B P, Berkey F T Sherman J, She C Y 2007 Annal. Geophys. 25 3

    [16]

    Tan H 2000 Chin. J. Space Sci. 20 373 (in Chinese)[谭辉2000空间科学学报20 373]

    [17]

    Matsushita S, Reddy C A 1967 J. Geophys. Res. 72 2903

    [18]

    Xiong N L, Tang C C, Li X J 1999 Introduction to the Physics of the Ionosphere (Wuhan:Wuhan University Press) pp276-290(in Chinese)[熊年禄, 唐存琛, 李行健1999电离层物理概论(武汉:武汉大学出版社)第276290页]

    [19]

    He L, Guo L, Li J 2014 Antenn. Propag. IEEE 52 724

    [20]

    Zhao J Z 2014 Aeronomy (Vol.1)(rearrangement) (Beijing:Peking University Press) pp168-172(in Chinese)[赵九章2014高空大气物理学(上册) (重排本) (北京:北京大学出版社)第168172页]

    [21]

    Yuan Z C, Shi J M 2005 Microw. J. 21 49 (in Chinese)[袁忠才, 时家明2005微波学报21 49]

    [22]

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing:Publishing House of Electronics Industry) pp76-103(in Chinese)[尹浩, 韩阳2013量子通信原理与技术(北京:电子工业出版社)第76130页]

    [23]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing:Military Science Press) pp49(in Chinese)[尹浩, 马怀新2006军事量子通信概论(北京:军事科学出版社)第49页]

    [24]

    Zhang D Y 2013 Quantum Logic Gates and Quantum Decoherence (Beijing:Science Press) pp90-110(in Chinese)[张登玉2013量子逻辑门与量子退相干(北京:科学出版社)第90110页]

    [25]

    Zhang Y D 2010 Quantum Mechanics (Beijing:Science Press) pp343-347(in Chinese)[张永德2010量子力学(北京:科学出版社)第343347页]

    [26]

    Zhang Y D 2005 Principles of Quantum Information Physics (Beijing:Science Press) pp125-151(in Chinese)[张永德2005量子信息物理原理(北京:科学出版社)第125151页]

    [27]

    Li K 2009 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[李科2009博士论文(合肥:中国科技大学)]

    [28]

    Nielsen A, Chuang I (translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol.2) (Beijing:Tsinghua University Press) pp64-71(in Chinese)[尼尔森, 庄著(郑大钟, 赵千川译) 2005量子计算和量子信息(二) (北京:清华大学出版社)第6471页]

    [29]

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302 (in Chinese)[吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明2016物理学报65 100302]

    [30]

    Gu Y B, Bao W S, Wang Y, Zhou C 2016 Chin. Phys. Lett. 33 040301

    [31]

    Wu J R 2011 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[吴建荣2011博士论文(合肥:中国科技大学)]

    [32]

    Dong C, Zhao S H, Zhao W H, Shi L, Zhao G H 2014 Acta Phys. Sin. 63 030302 (in Chinese)[东晨, 赵尚弘, 赵卫虎, 石磊, 赵顾颢2014物理学报63 030302]

    [33]

    Ma X F, Fung F C H, Razavi M 2012 Phys. Rev. A 86 052305

  • [1] 郭建亭, 李玉芳, 熊良钺, 叶恒强. 合金元素Zr韧化不同计量比Ni3Al合金的微观机制. 物理学报, 2005, 54(4): 1868-1873. doi: 10.7498/aps.54.1868
    [2] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真. 物理学报, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [3] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [4] 李治宽. 自由电子激光器中的电子阻尼运动. 物理学报, 2000, 49(5): 893-897. doi: 10.7498/aps.49.893
    [5] 冯国英, 张秋慧, 贾 俊, 李 刚, 周寿桓, 韩敬华, 杨李茗, 朱启华. 纳秒激光脉冲在空气中聚焦的临界自由电子密度问题. 物理学报, 2008, 57(10): 6304-6310. doi: 10.7498/aps.57.6304
    [6] 郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林. 中低纬度电离层偶发E层电波传播建模. 物理学报, 2017, 66(11): 119401. doi: 10.7498/aps.66.119401
    [7] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [8] 杨国林, 李伯臧, 李列明, 孙刚, 吴建华, 蒲富恪. 磁性多层膜层间交换耦合的自由电子模型研究. 物理学报, 1996, 45(5): 869-884. doi: 10.7498/aps.45.869
    [9] 程亚, 陈建文. 一种分析自由电子激光场的新量子方法. 物理学报, 1995, 44(10): 1691-1696. doi: 10.7498/aps.44.1691
    [10] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [11] 聂在平, 肖海林, 欧阳缮. MIMO量子信道的空间自由度研究. 物理学报, 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [12] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [13] 祝家清. 自由电子激光的能量转换. 物理学报, 1996, 45(1): 52-57. doi: 10.7498/aps.45.52
    [14] 文双春. 新型Wiggler谐波自由电子激光. 物理学报, 1997, 46(2): 272-278. doi: 10.7498/aps.46.272
    [15] 李治宽. 自由电子激光的准Dirac方程. 物理学报, 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [16] 郑晓毅, 龙银香. 基于cluster态的信道容量可控的可控量子安全直接通信方案. 物理学报, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [17] 于宜君. 热锂束荧光探测电子密度. 物理学报, 1990, 39(12): 1921-1927. doi: 10.7498/aps.39.1921
    [18] 尹元昭. 自由电子激光放大器的理论分析. 物理学报, 1983, 32(11): 1407-1415. doi: 10.7498/aps.32.1407
    [19] 方洪烈, 傅淑芬, G. T. 穆尔. 自由电子激光器的稳定脉冲解. 物理学报, 1984, 33(7): 935-942. doi: 10.7498/aps.33.935
    [20] 张世昌. Raman自由电子激光实验的理论分析. 物理学报, 1988, 37(10): 1684-1689. doi: 10.7498/aps.37.1684
  • 引用本文:
    Citation:
计量
  • 文章访问数:  479
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-28
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-04-05

中纬度地区电离层偶发E层对量子卫星通信性能的影响

  • 1. 西安邮电大学通信与信息工程学院, 西安 710121;
  • 2. 西北工业大学电子信息工程学院, 西安 710072;
  • 3. 西安电子科技大学综合业务网国家重点实验室, 西安 710071
  • 通信作者: 唐守荣, 1257113655@qq.com
    基金项目: 

    国家自然科学基金(批准号:61172071,61201194)、陕西省自然科学基础研究计划(批准号:2014JQ8318)、陕西省国际科技合作与交流计划项目(批准号:2015KW-013)和陕西省教育厅科研计划项目(项目编号是:16JK1711)资助的课题.

摘要: 电离层偶发E层是指在距离地面高度80150 km之间,在风剪切作用下,电子密度急剧增加的不规则电离薄层,它会对量子卫星光信号的传输造成极大的影响.然而,有关电离层偶发E层与星地间量子通信信道参数关系的研究,迄今尚未展开.为了研究偶发E层对量子卫星通信性能的影响,首先分析了它的形成过程,得出自由电子密度随高度变化的关系;然后建立了自由电子密度、偶发E层的厚度对量子卫星链路衰减的模型;针对振幅阻尼信道,给出自由电子密度对信道容量、纠缠保真度、误码率和安全密钥产生率的定量关系.理论分析和仿真结果表明,当偶发E层的厚度为1 km、电子密度由3105 cm-1增加到27105 cm-1时,信道容量由0.8304衰减到0.1319,纠缠保真度由0.9386下降到0.3606,量子误码率由0.0093增加到0.0769,安全密钥产生率由9.96810-5减小到1.9110-6.由此可见,电子密度的大小和偶发E层的厚度对量子卫星通信性能有显著的影响.因此,在进行量子卫星通信时,应根据对电离层参数的探测情况,自适应调整卫星系统的各项指标,以确保量子通信的可靠性.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回