搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于旋转场曲率的二维剪切梁单元建模

张大羽 罗建军 郑银环 袁建平

基于旋转场曲率的二维剪切梁单元建模

张大羽, 罗建军, 郑银环, 袁建平
PDF
导出引用
导出核心图
  • 对二维剪切梁单元进行研究,利用平面旋转场理论推导了精确曲率模型.采用几何精确梁理论构建了剪切梁单元弹性力矩阵.通过绝对节点坐标方法建立了系统的非线性动力学方程,提出基于旋转场曲率的二维剪切梁单元,并分别引入经典二维剪切梁单元和基于位移场曲率的二维剪切梁单元进行比较研究.首先,静力学分析证明了所提模型的正确性;其次,特征频率分析验证了模型可与理论解符合,收敛精度高,并且能准确地预测单元固有频率对应的振型;最后,在非线性动力学问题上,通过与ANSYS结果对比分析,证明了该模型可有效处理柔性大变形问题,并且与经典二维剪切梁单元相比具有缓解剪切闭锁的优势.因此,本文提出的基于旋转场曲率的二维剪切梁单元在处理几何非线性问题中具有较大的应用潜力.
      通信作者: 罗建军, jjluo@nwpu.edu.cn
    • 基金项目: 国家自然科学基金重大项目(批准号:61690210,61690211)和国家自然科学基金(批准号:61603304,11472213)资助的课题.
    [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51

    [2]

    Nishida S I, Kawamoto S 2011 Acta Astronaut. 68 113

    [3]

    Liu J Y, Lu H 2007 Multibody Syst. Dyn. 18 487

    [4]

    He X S, Song M, Deng F Y 2011 Acta Phys. Sin. 60 044501 (in Chinese) [和兴锁, 宋明, 邓峰岩 2011 物理学报 60 044501]

    [5]

    He X S, Deng F Y, Wang R 2010 Acta Phys. Sin. 59 1428 (in Chinese) [和兴锁, 邓峰岩, 王睿 2010 物理学报 59 1428]

    [6]

    Chen S J, Zhang D G, Hong J Z 2013 Chin. J. Theor. Appl. Mech. 45 251 (in Chinese) [陈思佳, 章定国, 洪嘉振 2013 力学学报 45 251]

    [7]

    Shabana A A 1997 Multibody Syst. Dyn. 1 189

    [8]

    Tian Q, Zhang Y Q, Chen L P, Tan G 2010 Adv. Mech. 40 189 (in Chinese) [田强, 张云清, 陈立平, 覃刚 2010 力学进展 40 189]

    [9]

    Omar M A, Shabana A A 2001 J. Sound Vib. 243 565

    [10]

    Hussein B A, Sugiyama H, Shabana A A 2007 J. Comput. Nonlinear Dyn. 2 146

    [11]

    Dmitrochenko O N, Hussein B A, Shabana A A 2009 J. Comput. Nonlinear Dyn. 4 21002

    [12]

    García-Vallejo D, Mikkola A M, Escalona J L 2007 Nonlinear Dyn. 50 249

    [13]

    Tian Q, Zhang Y Q, Chen L P, Yang J Z 2010 Nonlinear Dyn. 60 489

    [14]

    Gerstmayr J, Matikainen M K, Mikkola A M 2008 Multibody Syst. Dyn. 20 359

    [15]

    Nachbagauer K, Pechstein A S, Irschik H, Gerstmayr J 2011 Multibody Syst. Dyn. 26 245

    [16]

    Nachbagauer K, Gruber P, Gerstmayr J 2013 J. Comput. Nonlinear Dyn. 8 021004

    [17]

    Gerstmayr J, Shabana A A 2006 Nonlinear Dyn. 45 109

    [18]

    Dufva K E, Sopanen J T, Mikkola A M 2005 J. Sound Vib. 280 719

    [19]

    Mikkola A M, Dmitrochenko O, Matikainen M 2009 J. Comput. Nonlinear Dyn. 4 011004

    [20]

    Vesa-Ville A, Hurskainen T, Matikainen M K, Wang J, Mikkola A M 2016 J. Comput. Nonlinear Dyn. 12 041007

    [21]

    Zhang X S, Zhang D G, Chen S J, Hong J Z 2016 Acta Phys. Sin. 64 094501 (in Chinese) [章孝顺, 章定国, 陈思佳, 洪嘉振 2016 物理学报 64 094501]

    [22]

    Goetz A 1970 Introduction to Differential Geometry (Reading, Massachussetts: Addison Wesley Pub. Co) pp56-58

    [23]

    Timoshenko S 1940 Strength of Materials (Part I Elementary Theory and Problems Second Edition) (New York: D.Van Nostrand Co) pp147-148

  • [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51

    [2]

    Nishida S I, Kawamoto S 2011 Acta Astronaut. 68 113

    [3]

    Liu J Y, Lu H 2007 Multibody Syst. Dyn. 18 487

    [4]

    He X S, Song M, Deng F Y 2011 Acta Phys. Sin. 60 044501 (in Chinese) [和兴锁, 宋明, 邓峰岩 2011 物理学报 60 044501]

    [5]

    He X S, Deng F Y, Wang R 2010 Acta Phys. Sin. 59 1428 (in Chinese) [和兴锁, 邓峰岩, 王睿 2010 物理学报 59 1428]

    [6]

    Chen S J, Zhang D G, Hong J Z 2013 Chin. J. Theor. Appl. Mech. 45 251 (in Chinese) [陈思佳, 章定国, 洪嘉振 2013 力学学报 45 251]

    [7]

    Shabana A A 1997 Multibody Syst. Dyn. 1 189

    [8]

    Tian Q, Zhang Y Q, Chen L P, Tan G 2010 Adv. Mech. 40 189 (in Chinese) [田强, 张云清, 陈立平, 覃刚 2010 力学进展 40 189]

    [9]

    Omar M A, Shabana A A 2001 J. Sound Vib. 243 565

    [10]

    Hussein B A, Sugiyama H, Shabana A A 2007 J. Comput. Nonlinear Dyn. 2 146

    [11]

    Dmitrochenko O N, Hussein B A, Shabana A A 2009 J. Comput. Nonlinear Dyn. 4 21002

    [12]

    García-Vallejo D, Mikkola A M, Escalona J L 2007 Nonlinear Dyn. 50 249

    [13]

    Tian Q, Zhang Y Q, Chen L P, Yang J Z 2010 Nonlinear Dyn. 60 489

    [14]

    Gerstmayr J, Matikainen M K, Mikkola A M 2008 Multibody Syst. Dyn. 20 359

    [15]

    Nachbagauer K, Pechstein A S, Irschik H, Gerstmayr J 2011 Multibody Syst. Dyn. 26 245

    [16]

    Nachbagauer K, Gruber P, Gerstmayr J 2013 J. Comput. Nonlinear Dyn. 8 021004

    [17]

    Gerstmayr J, Shabana A A 2006 Nonlinear Dyn. 45 109

    [18]

    Dufva K E, Sopanen J T, Mikkola A M 2005 J. Sound Vib. 280 719

    [19]

    Mikkola A M, Dmitrochenko O, Matikainen M 2009 J. Comput. Nonlinear Dyn. 4 011004

    [20]

    Vesa-Ville A, Hurskainen T, Matikainen M K, Wang J, Mikkola A M 2016 J. Comput. Nonlinear Dyn. 12 041007

    [21]

    Zhang X S, Zhang D G, Chen S J, Hong J Z 2016 Acta Phys. Sin. 64 094501 (in Chinese) [章孝顺, 章定国, 陈思佳, 洪嘉振 2016 物理学报 64 094501]

    [22]

    Goetz A 1970 Introduction to Differential Geometry (Reading, Massachussetts: Addison Wesley Pub. Co) pp56-58

    [23]

    Timoshenko S 1940 Strength of Materials (Part I Elementary Theory and Problems Second Edition) (New York: D.Van Nostrand Co) pp147-148

  • [1] 章孝顺, 章定国, 陈思佳, 洪嘉振. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究. 物理学报, 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [2] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究. 物理学报, 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [3] 和兴锁, 宋明, 邓峰岩. 非惯性系下考虑剪切变形的柔性梁的动力学建模. 物理学报, 2011, 60(4): 044501. doi: 10.7498/aps.60.044501
    [4] 高越, 符师桦, 蔡玉龙, 程腾, 张青川. 数字剪切散斑干涉法研究铝合金中Portevin-Le Chatelier 带的离面变形行为. 物理学报, 2014, 63(6): 066201. doi: 10.7498/aps.63.066201
    [5] 王祥, 钞润泽, 管仁国, 李元东, 刘春明. 金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究. 物理学报, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [6] 张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波. 基于磁化电流法的双稳压电悬臂梁磁力精确分析. 物理学报, 2017, 66(22): 220502. doi: 10.7498/aps.66.220502
    [7] 张淳民, 阮 锴, 赵葆常. 高层大气风场探测改型大光程差Sagnac干涉仪全视场角光程差与横向剪切量的精确计算. 物理学报, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [8] 杜超凡, 章定国. 基于无网格点插值法的旋转悬臂梁的动力学分析. 物理学报, 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [9] 胡建波, 俞宇颖, 戴诚达, 谭 华. 冲击加载下铝的剪切模量. 物理学报, 2005, 54(12): 5750-5754. doi: 10.7498/aps.54.5750
    [10] 张国华, 王博, 孙其诚, 王光谦. 半柔性网络剪切模量的计算. 物理学报, 2009, 58(9): 6549-6553. doi: 10.7498/aps.58.6549
    [11] 董家齐, 傅新宇, 应纯同, 刘广均. 平行速度剪切驱动湍流引起的粒子输运. 物理学报, 1997, 46(3): 474-480. doi: 10.7498/aps.46.474
    [12] 张程宾, 于程, 刘向东, 金瓯, 陈永平. 剪切流场中双重乳液稳态形变. 物理学报, 2016, 65(20): 204704. doi: 10.7498/aps.65.204704
    [13] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [14] 唐瀚玉, 王娜, 吴学邦, 刘长松. 剪切振动下湿颗粒的力学谱. 物理学报, 2018, 67(20): 206402. doi: 10.7498/aps.67.20180966
    [15] 强稳朝. 自引力旋转球的整体变形几何. 物理学报, 2001, 50(9): 1643-1647. doi: 10.7498/aps.50.1643
    [16] 华劲松, 经福谦, 谭 华, 周显明. 一种计算剪切模量温度系数的方法. 物理学报, 2005, 54(1): 246-250. doi: 10.7498/aps.54.246
    [17] 陈大年, 王焕然, 俞宇颖, 谭 华, 胡建波, 戴诚达. 冲击波作用下铝的等效剪切模量. 物理学报, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [18] 刘永利, 张宗宁, 张林, 赵星, 王绍青, 叶恒强. TiAl/Ti3Al体系剪切变形的分子动力学研究. 物理学报, 2009, 58(13): 246-S253. doi: 10.7498/aps.58.246
    [19] 侯日立, 彭建祥, 经福谦. 一种计算金属剪切模量的本构模型:以Al为例. 物理学报, 2009, 58(9): 6413-6418. doi: 10.7498/aps.58.6413
    [20] 刘培生. 多孔材料在压缩载荷作用下的剪切破坏模式分析. 物理学报, 2010, 59(7): 4849-4856. doi: 10.7498/aps.59.4849
  • 引用本文:
    Citation:
计量
  • 文章访问数:  347
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-31
  • 修回日期:  2017-04-06
  • 刊出日期:  2017-06-05

基于旋转场曲率的二维剪切梁单元建模

  • 1. 西北工业大学航天学院, 航天飞行动力学技术重点实验室, 西安 710072;
  • 2. 武汉理工大学机电工程学院, 武汉 430070
  • 通信作者: 罗建军, jjluo@nwpu.edu.cn
    基金项目: 

    国家自然科学基金重大项目(批准号:61690210,61690211)和国家自然科学基金(批准号:61603304,11472213)资助的课题.

摘要: 对二维剪切梁单元进行研究,利用平面旋转场理论推导了精确曲率模型.采用几何精确梁理论构建了剪切梁单元弹性力矩阵.通过绝对节点坐标方法建立了系统的非线性动力学方程,提出基于旋转场曲率的二维剪切梁单元,并分别引入经典二维剪切梁单元和基于位移场曲率的二维剪切梁单元进行比较研究.首先,静力学分析证明了所提模型的正确性;其次,特征频率分析验证了模型可与理论解符合,收敛精度高,并且能准确地预测单元固有频率对应的振型;最后,在非线性动力学问题上,通过与ANSYS结果对比分析,证明了该模型可有效处理柔性大变形问题,并且与经典二维剪切梁单元相比具有缓解剪切闭锁的优势.因此,本文提出的基于旋转场曲率的二维剪切梁单元在处理几何非线性问题中具有较大的应用潜力.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回