搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于雷诺应力模型的高精度分离涡模拟方法

王圣业 王光学 董义道 邓小刚

基于雷诺应力模型的高精度分离涡模拟方法

王圣业, 王光学, 董义道, 邓小刚
PDF
导出引用
导出核心图
  • 基于Speziale-Sarkar-Gatski/Launder-Reece-Rodi(SSG/LRR)-ω雷诺应力模型发展了一类分离涡模拟方法,结合高精度加权紧致非线性格式在典型翼型及三角翼算例中进行了验证,并和传统基于线性涡粘模型的分离涡模拟方法进行了对比.结果表明:基于SSG/LRR-ω模型的分离涡模拟方法,提高了原雷诺应力模型对非定常分离湍流的模拟能力;同时相比于传统基于线性涡粘模型的分离涡模拟方法,尤其是在翼型最大升力迎角和三角翼涡破裂迎角附近,该方法在平均气动力预测的准确度、分离湍流模拟的精细度等方面更加优秀.
      通信作者: 邓小刚, xgdeng2000@vip.sina.com
    • 基金项目: 国防科学技术大学科研计划(批准号:ZDYYJCYJ20140101)资助的课题.
    [1]

    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D 2014 CFD Vision 2030 Study:A Path to Revolutionary Computational Aerosciences (Washington, DC:Langley Research Center, NASA) Tech. Rep. NASA/CR-2014-218178

    [2]

    Eisfeld B, Rumsey C, Togiti V 2016 AIAA J. 54 1524

    [3]

    Rumsey C 2014 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-0201

    [4]

    Tucker P 2006 Int. J. Numer. Meth. Fluids 51 261

    [5]

    Richez F, Pape A, Costes M 2015 AIAA J. 53 3157

    [6]

    Xu G, Jiang X, Liu G 2016 Acta Mech. Sin. 32 588

    [7]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach (Columbus:Greyden Press)

    [8]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [9]

    Probst A, Radespiel R, Knopp T 2011 20st AIAA Computational Fluid Dynamics Conference Honolulu, Hawaii, June 27-30, 2011 AIAA 2011-3206

    [10]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, 8-11 January 2001, AIAA 2001-0879

    [11]

    Greschner B, Thiele F, Gurr A, Casalino D, Jacob M 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2628

    [12]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluids 37 402

    [13]

    Cécora R D, Radespiel R, Eisfeld B, Probst A 2015 AIAA J. 53 739

    [14]

    Rumsey C 2015 in Eisfeld B (ed.) Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics (Springer Tracts Mechanical Engineering) p19

    [15]

    Eisfeld B, Brodersen O 2005 23rd AIAA Applied Aerodynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-4727

    [16]

    Togiti V, Eisfeld B, Brodersen O 2014 J. Aircraft 51 1331

    [17]

    Dong Y D, Wang D F, Wang G X, Deng X G 2016 J. National Univ. Defense Technol. 38 46(in Chinese)[董义道, 王东方, 王光学, 邓小刚2016国防科技大学学报 38 46]

    [18]

    Shu C 2003 Int. J. Comput. Fluid D 17 107

    [19]

    Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H, Kroll N, May G, Persson P O, van Leer B, Visbal M 2013 Int. J. Numer. Meth. Fluids 72 811

    [20]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Int. J. Comput. Fluid D 30 469

    [21]

    Georgiadis N, Rizzetta D, Fureby C 2010 AIAA J. 48 1772

    [22]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [23]

    Deng X, Liu X, Mao M, Zhang H 2005 17th AIAA Computational Fluid Dynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-5246

    [24]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [25]

    Bellot G, Corrsin S 1971 J. Fluid Mech. 48 273

    [26]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [27]

    Shur M, Spalart P, Strelets M, Travin A 2008 Int. J. Heat Fluid Fl. 29 1638

    [28]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [29]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [30]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705(in Chinese)[冈敦殿, 易仕和, 赵云飞2015物理学报 64 054705]

    [31]

    Schumann U 1977 Phys. Fluids 20 721

    [32]

    Chassaing J, Gerolymos G, Vallet I 2003 AIAA J. 41 763

    [33]

    Yossef Y 2014 J. Comput. Phys. 276 635

    [34]

    Yang Y, Zha G 2016 46th AIAA Fluid Dynamics Conference Washington, D.C., USA, June 13-17, 2016 AIAA 2016-3185

    [35]

    Shur M, Spalart P, Strelets M, Travin A 1999 Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements Corsica, France, May 24-26, 1999 p669

    [36]

    Chen M Z 2002 Fundamentals of Viscous Fliud Dynamics (Beijing:Higher Education Press) p239(in Chinese)[陈懋章2002粘性流体动力学基础(北京:高等教育出版社)第239页]

    [37]

    Chen Y, Guo L D, Peng Q, Chen Z Q, Liu W H 2015 Acta Phys. Sin. 64 134701(in Chinese)[陈勇, 郭隆德, 彭强, 陈志强, 刘卫红2015物理学报 64 134701]

    [38]

    Wadcock A 1987 Investigation of Low Speed Turbulent Scparatcd Flow Around Airfoils (Washington, DC:Ames Research Center, NASA) Tech. Rep. NASA-CR-177450

    [39]

    Roy R, Stoellinger M 2015 53rd AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 5-9, 2015 AIAA 2015-1982

    [40]

    Luckring M, Hummel D 2013 Aerosp. Sci. Technol. 24 77

    [41]

    Chu J, Luckring M 1996 Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3:Medium-Radius Leading Edge (Washington, DC:Ames Research Center, NASA) NASA-TM-4645-Vol-3

    [42]

    Luckring M 2013 Aerosp. Sci. Technol. 24 10

  • [1]

    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D 2014 CFD Vision 2030 Study:A Path to Revolutionary Computational Aerosciences (Washington, DC:Langley Research Center, NASA) Tech. Rep. NASA/CR-2014-218178

    [2]

    Eisfeld B, Rumsey C, Togiti V 2016 AIAA J. 54 1524

    [3]

    Rumsey C 2014 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-0201

    [4]

    Tucker P 2006 Int. J. Numer. Meth. Fluids 51 261

    [5]

    Richez F, Pape A, Costes M 2015 AIAA J. 53 3157

    [6]

    Xu G, Jiang X, Liu G 2016 Acta Mech. Sin. 32 588

    [7]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach (Columbus:Greyden Press)

    [8]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [9]

    Probst A, Radespiel R, Knopp T 2011 20st AIAA Computational Fluid Dynamics Conference Honolulu, Hawaii, June 27-30, 2011 AIAA 2011-3206

    [10]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, 8-11 January 2001, AIAA 2001-0879

    [11]

    Greschner B, Thiele F, Gurr A, Casalino D, Jacob M 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2628

    [12]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluids 37 402

    [13]

    Cécora R D, Radespiel R, Eisfeld B, Probst A 2015 AIAA J. 53 739

    [14]

    Rumsey C 2015 in Eisfeld B (ed.) Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics (Springer Tracts Mechanical Engineering) p19

    [15]

    Eisfeld B, Brodersen O 2005 23rd AIAA Applied Aerodynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-4727

    [16]

    Togiti V, Eisfeld B, Brodersen O 2014 J. Aircraft 51 1331

    [17]

    Dong Y D, Wang D F, Wang G X, Deng X G 2016 J. National Univ. Defense Technol. 38 46(in Chinese)[董义道, 王东方, 王光学, 邓小刚2016国防科技大学学报 38 46]

    [18]

    Shu C 2003 Int. J. Comput. Fluid D 17 107

    [19]

    Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H, Kroll N, May G, Persson P O, van Leer B, Visbal M 2013 Int. J. Numer. Meth. Fluids 72 811

    [20]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Int. J. Comput. Fluid D 30 469

    [21]

    Georgiadis N, Rizzetta D, Fureby C 2010 AIAA J. 48 1772

    [22]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [23]

    Deng X, Liu X, Mao M, Zhang H 2005 17th AIAA Computational Fluid Dynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-5246

    [24]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [25]

    Bellot G, Corrsin S 1971 J. Fluid Mech. 48 273

    [26]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [27]

    Shur M, Spalart P, Strelets M, Travin A 2008 Int. J. Heat Fluid Fl. 29 1638

    [28]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [29]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [30]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705(in Chinese)[冈敦殿, 易仕和, 赵云飞2015物理学报 64 054705]

    [31]

    Schumann U 1977 Phys. Fluids 20 721

    [32]

    Chassaing J, Gerolymos G, Vallet I 2003 AIAA J. 41 763

    [33]

    Yossef Y 2014 J. Comput. Phys. 276 635

    [34]

    Yang Y, Zha G 2016 46th AIAA Fluid Dynamics Conference Washington, D.C., USA, June 13-17, 2016 AIAA 2016-3185

    [35]

    Shur M, Spalart P, Strelets M, Travin A 1999 Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements Corsica, France, May 24-26, 1999 p669

    [36]

    Chen M Z 2002 Fundamentals of Viscous Fliud Dynamics (Beijing:Higher Education Press) p239(in Chinese)[陈懋章2002粘性流体动力学基础(北京:高等教育出版社)第239页]

    [37]

    Chen Y, Guo L D, Peng Q, Chen Z Q, Liu W H 2015 Acta Phys. Sin. 64 134701(in Chinese)[陈勇, 郭隆德, 彭强, 陈志强, 刘卫红2015物理学报 64 134701]

    [38]

    Wadcock A 1987 Investigation of Low Speed Turbulent Scparatcd Flow Around Airfoils (Washington, DC:Ames Research Center, NASA) Tech. Rep. NASA-CR-177450

    [39]

    Roy R, Stoellinger M 2015 53rd AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 5-9, 2015 AIAA 2015-1982

    [40]

    Luckring M, Hummel D 2013 Aerosp. Sci. Technol. 24 77

    [41]

    Chu J, Luckring M 1996 Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3:Medium-Radius Leading Edge (Washington, DC:Ames Research Center, NASA) NASA-TM-4645-Vol-3

    [42]

    Luckring M 2013 Aerosp. Sci. Technol. 24 10

  • [1] 王光学, 王圣业, 葛明明, 邓小刚. 基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟. 物理学报, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [2] 葛明明, 王圣业, 王光学, 邓小刚. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟. 物理学报, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [3] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟. 物理学报, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [4] 任金莲, 任恒飞, 陆伟刚, 蒋涛. 基于分裂格式有限点集法对孤立波二维非线性问题的模拟. 物理学报, 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [5] Dong Ping, 冯士德, 钟霖浩, 高守亭. 格子Boltzmann模型平衡分布边界条件和多棱柱排列渗流流场的数值模拟. 物理学报, 2007, 56(3): 1238-1244. doi: 10.7498/aps.56.1238
    [6] 蒋方忻, 孙宗琦. 间隙原子非线性应力感生扩散的简化弹性偶极子模型. 物理学报, 1989, 38(10): 1679-1686. doi: 10.7498/aps.38.1679
    [7] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [8] 刘中淼, 孙其诚, 宋世雄, 史庆藩. 准静态颗粒流流动规律的热力学分析. 物理学报, 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [9] 张忠宇, 姚熊亮, 张阿漫. 基于间断有限元方法的并列圆柱层流流动特性. 物理学报, 2016, 65(8): 084701. doi: 10.7498/aps.65.084701
    [10] 杜诚, 徐敏义, 米建春. 雷诺数对圆形渐缩喷嘴湍流射流的影响. 物理学报, 2010, 59(9): 6331-6338. doi: 10.7498/aps.59.6331
    [11] 林黎明. 低雷诺数下钝体三维尾迹中的涡量符号律. 物理学报, 2020, 69(3): 034701. doi: 10.7498/aps.69.20191011
    [12] 李华兵, 吕晓阳. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [13] 吴文堂, 洪延姬, 范宝春. 确定分布的展向Lorentz力调制下的槽道湍流涡结构. 物理学报, 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [14] 包芸, 宁浩, 徐炜. 湍流热对流大尺度环流反转时的角涡特性. 物理学报, 2014, 63(15): 154703. doi: 10.7498/aps.63.154703
    [15] 连祺祥, 郭 辉. 湍流边界层中下扫流与“反发卡涡”. 物理学报, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
    [16] 沈守枫. 高维微分-差分模型的Virasoro对称子代数,多线性变量分离解和局域激发模式. 物理学报, 2006, 55(11): 5606-5610. doi: 10.7498/aps.55.5606
    [17] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [18] 彭晓东, 尹绍全. 基于电阻性交换模湍流的环带流动力学. 物理学报, 2004, 53(9): 3094-3098. doi: 10.7498/aps.53.3094
    [19] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [20] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法二维模型的软性磨粒两相流流场特性分析方法. 物理学报, 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
  • 引用本文:
    Citation:
计量
  • 文章访问数:  421
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-20
  • 修回日期:  2017-05-14
  • 刊出日期:  2017-09-20

基于雷诺应力模型的高精度分离涡模拟方法

  • 1. 国防科学技术大学航天科学与工程学院, 长沙 410073;
  • 2. 中山大学物理学院, 广州 510275
  • 通信作者: 邓小刚, xgdeng2000@vip.sina.com
    基金项目: 

    国防科学技术大学科研计划(批准号:ZDYYJCYJ20140101)资助的课题.

摘要: 基于Speziale-Sarkar-Gatski/Launder-Reece-Rodi(SSG/LRR)-ω雷诺应力模型发展了一类分离涡模拟方法,结合高精度加权紧致非线性格式在典型翼型及三角翼算例中进行了验证,并和传统基于线性涡粘模型的分离涡模拟方法进行了对比.结果表明:基于SSG/LRR-ω模型的分离涡模拟方法,提高了原雷诺应力模型对非定常分离湍流的模拟能力;同时相比于传统基于线性涡粘模型的分离涡模拟方法,尤其是在翼型最大升力迎角和三角翼涡破裂迎角附近,该方法在平均气动力预测的准确度、分离湍流模拟的精细度等方面更加优秀.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回