搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Br2分子在360610 nm的光解离动力学研究

秦朝朝 黄燕 彭玉峰

引用本文:
Citation:

Br2分子在360610 nm的光解离动力学研究

秦朝朝, 黄燕, 彭玉峰

Photodissociation dynamics of Br2 in wavelength range of 360-610 nm

Qin Chao-Chao, Huang Yan, Peng Yu-Feng
PDF
导出引用
  • 利用包含转动自由度在内的含时薛定谔方程研究了Br2分子在波长范围为360610 nm的光解离动力学.通过计算得到了Br2分子在四个特征波长处的切片解离影像,并经过分析得到了与切片解离影像相对应的动能分布;计算了Br2分子在波长范围为360610 nm内总的动能分布,以及从A,B和C三个电子态解离的碎片各自所对应的动能分布;计算了A,B和C三个电子态各自的解离概率以及碎片产物的分支比(Br*/(Br+Br*))随波长的变化.
    We study the photodissociation of Br2 in a wavelength range from 360 nm to 610 nm in the near-visible UV continuum band based on the calculation of time-dependent quantum wave packet including the rotational degree of freedom. We calculate four representative samples of two-dimensional (2D) slice images taken from photolysis of Br2 molecules, in which the different rings in the 2D slice images are corresponding to the different photodissiation channels. The radius of each 2D slice image ring is positively related to kinetic energy of photofragment. The maximum photofragment flux perpendicular or parallel to the photolysis polarization is also related to photodissiation channel. Furthermore, we calculate the total kinetic energy distribution P(E) and the P(E) distribution from the respective electronic excited states A, B and C in the wavelength range of 360-610 nm, from which we find that the wavelengths corresponding to the maximum dissociation probability from respective electronic excited states A, B and C are 510 nm, 469 nm, and 388 nm, respectively. As is well known, not only the total dissociation probability, but also the respective dissociation probability of electronic excited states is dependent on the laser wavelength. We also calculate the dissociation probabilities from electronic excited states A, B and C, respectively. We find that the dissociation probability of electronic excited state A is not significant when 480 nm and that the peak intensity of the dissociation probability to the A state is about 13.0\% of that to the C state, while that to the B state is about 43.4\%. In addition, because the electronic excited states A and C are related to the photodissociation channel Br + Br, and the electronic excited state B is corresponding to the photodissociation channel Br + Br*, the images which reveal the involvement of more than one product channel can be analyzed by the respective channel branching ratios. At the short wavelength ( 400 nm) the branching ratio (Br*/(Br+Br*)) is small, even near to zero, which reflects that electronic state C transition gives rise to many Br + Br over Br + Br*. However, within the wavelength range (=440-500 nm) Br + Br* photofragments are excess of Br + Br, so the electronic state B transition is dominant. At longer wavelength ( 530 nm) the branching ratio (Br*/(Br+Br*)) is also low, near to zero, indicating the prevalence of electronic state A transition. Ignoring the dissociation from electronic state C, the maximum dissociation probability 469 nm is consistent with branching ratio maximum 462 nm. Because the electronic excited state C is related to the photodissociation channel Br + Br, the branching ratio will be reduced. So the maximum wavelength of branching ratio is blue shifted.
      通信作者: 秦朝朝, qinch@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:U1404112,11404411)、河南省科技攻关研究项目(批准号:142102310274,172102210340)和河南省教育厅重点项目(批准号:17A140021)资助的课题.
      Corresponding author: Qin Chao-Chao, qinch@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1404112, 11404411), the Advanced Technology Research Program of Henan Province, China (Grant Nos. 142102310274, 172102210340), and the Foundation for Key Program of Education Department of Henan Province, China (Grant No. 17A140021).
    [1]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [2]

    Ashfold M N R, Baggott J E https://doi.org/10.1002/jps.2600780520 1989 Molecular Photodissociation Dynamics (Letchorth:Wiley Press) p243

    [3]

    Demyanenko A V, Potter A B, Dribinski V, Reisler H 2002 J. Chem. Phys. 117 2568

    [4]

    Rakitzis T P, Kitsopoulos T N 2002 J. Chem. Phys 116 9228

    [5]

    Nugent-Glandorf L, Scheer M, Samuels D A, Mulhisen A M, Grant E R, Yang X M, Bierbaum V M, Leone S R https://doi.org/10.1103/PhysRevLett.87.193002 2001 Phys. Rev. Lett. 87 1103

    [6]

    Nugent-Glandorf L, Scheer M, Samuels D A, Bierbaum V M, Leone S R 2002 J. Chem. Phys. 117 1063

    [7]

    Klemm A, Kimmich R, Weber M 2001 Phys. Rev. E 63 041514

    [8]

    Han S I, Pierce K L, Pines A 2006 Phys. Rev. E 74 016302

    [9]

    Rogers L J, Ashfold M N R, Matsumi Y, Kawasaki M Whitaker B J 1996 Chem. Phys. Lett. 258 159

    [10]

    Beckert M, Greaves S J, Ashfold M N R 2003 Phys. Chem. Chem. Phys. 5 308

    [11]

    Kato H, Baba M 1995 Chem. Rev. 95 2311

    [12]

    Asano Y, Yabushita S 2003 Chem. Phys. Lett. 372 348

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [14]

    Zhang J, Zhang S A, Yang Y, Sun S Z, Wu H, Li J, Chen Y T, Jia T Q, Wang Z G, Kong F N, Sun Z R 2014 Phys. Rev. A 90 053428

    [15]

    Kettunen J A, Sankari A, Partanen L, Urpelainen S, Kivimki A, Huttula M 2012 Phys. Rev. A 85 062703

    [16]

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302 (in Chinese)[刘玉柱, 陈云云, 郑改革, 金峰, Knopp Gregor 2016 物理学报 65 053302]

    [17]

    Liu Y Z, Xiao S R, Wang J F, He Z F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301 (in Chinese)[刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Knopp Gregor 2016 物理学报 65 113301]

    [18]

    Liu Y Z, Deng X L, Li S, Guan Y, Li J, Long J Y, Zhang B 2016 Acta Phys. Sin. 65 193301 (in Chinese)[刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 193301]

    [19]

    Liu Y Z, Long J Y, Xu L X, Zhang X Y, Zhang B 2017 Chin. Phys. Lett. 34 033301

    [20]

    Orr-Ewing A J 2015 Ann. Rev. Phys. Chem. 66 119

    [21]

    Orlando J J, Burkholder J B 1995 J. Phys. Chem. 99 1143

    [22]

    Tellinghuisen J 2001 J. Chem. Phys. 115 10417

    [23]

    Gomes J D, Gargano R, Martins J B L, de Macedo L G M https://doi.org/10.1021/jp4114283 2014 J. Phys. Chem. A 118 5818

    [24]

    Focsa C, Li H, Bernath P F 2000 J. Mol. Spectrosc. 200 104

    [25]

    Yukiya T, Nishimiya N, Samejima Y, Yamaguchi K, Suzuki M, Boone C D, Ozier I, Le Roy R J 2013 J. Mol. Spectrosc. 283 32

    [26]

    Jung Y J, Park M S, Kim Y S, Jung K H 1999 J. Chem. Phys. 111 4005

    [27]

    Kim T K, Park M S, Lee K W, Jung K H 2001 J. Chem. Phys. 115 10745

    [28]

    Zhu R S, Tang B F, Zhang X, Zhang B 2010 J. Phys. Chem. A 114 6188

    [29]

    Han Y C, Yuan K J, Hu W H, Yan T M, Cong S L 2008 J. Chem. Phys. 128 134303

    [30]

    Numico R, Keller A, Atabek O 1995 Phys. Rev. A 52 1298

    [31]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845

    [32]

    Jolicard G, Billing G D 1991 Chem. Phys. 149 261

    [33]

    Marston C C, Balintkurti G G 1989 J. Chem. Phys. 91 3571

    [34]

    Willner K, Dulieu O, Masnou-Seeuwsa F 2004 J. Chem. Phys. 120 548

    [35]

    Bandrauk A D, Shen H 1993 J. Chem. Phys. 99 1185

    [36]

    Chu T S, Zhang Y, Han K L 2010 Int. Rev. Phys. Chem. 25 201

  • [1]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [2]

    Ashfold M N R, Baggott J E https://doi.org/10.1002/jps.2600780520 1989 Molecular Photodissociation Dynamics (Letchorth:Wiley Press) p243

    [3]

    Demyanenko A V, Potter A B, Dribinski V, Reisler H 2002 J. Chem. Phys. 117 2568

    [4]

    Rakitzis T P, Kitsopoulos T N 2002 J. Chem. Phys 116 9228

    [5]

    Nugent-Glandorf L, Scheer M, Samuels D A, Mulhisen A M, Grant E R, Yang X M, Bierbaum V M, Leone S R https://doi.org/10.1103/PhysRevLett.87.193002 2001 Phys. Rev. Lett. 87 1103

    [6]

    Nugent-Glandorf L, Scheer M, Samuels D A, Bierbaum V M, Leone S R 2002 J. Chem. Phys. 117 1063

    [7]

    Klemm A, Kimmich R, Weber M 2001 Phys. Rev. E 63 041514

    [8]

    Han S I, Pierce K L, Pines A 2006 Phys. Rev. E 74 016302

    [9]

    Rogers L J, Ashfold M N R, Matsumi Y, Kawasaki M Whitaker B J 1996 Chem. Phys. Lett. 258 159

    [10]

    Beckert M, Greaves S J, Ashfold M N R 2003 Phys. Chem. Chem. Phys. 5 308

    [11]

    Kato H, Baba M 1995 Chem. Rev. 95 2311

    [12]

    Asano Y, Yabushita S 2003 Chem. Phys. Lett. 372 348

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [14]

    Zhang J, Zhang S A, Yang Y, Sun S Z, Wu H, Li J, Chen Y T, Jia T Q, Wang Z G, Kong F N, Sun Z R 2014 Phys. Rev. A 90 053428

    [15]

    Kettunen J A, Sankari A, Partanen L, Urpelainen S, Kivimki A, Huttula M 2012 Phys. Rev. A 85 062703

    [16]

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302 (in Chinese)[刘玉柱, 陈云云, 郑改革, 金峰, Knopp Gregor 2016 物理学报 65 053302]

    [17]

    Liu Y Z, Xiao S R, Wang J F, He Z F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301 (in Chinese)[刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Knopp Gregor 2016 物理学报 65 113301]

    [18]

    Liu Y Z, Deng X L, Li S, Guan Y, Li J, Long J Y, Zhang B 2016 Acta Phys. Sin. 65 193301 (in Chinese)[刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 物理学报 65 193301]

    [19]

    Liu Y Z, Long J Y, Xu L X, Zhang X Y, Zhang B 2017 Chin. Phys. Lett. 34 033301

    [20]

    Orr-Ewing A J 2015 Ann. Rev. Phys. Chem. 66 119

    [21]

    Orlando J J, Burkholder J B 1995 J. Phys. Chem. 99 1143

    [22]

    Tellinghuisen J 2001 J. Chem. Phys. 115 10417

    [23]

    Gomes J D, Gargano R, Martins J B L, de Macedo L G M https://doi.org/10.1021/jp4114283 2014 J. Phys. Chem. A 118 5818

    [24]

    Focsa C, Li H, Bernath P F 2000 J. Mol. Spectrosc. 200 104

    [25]

    Yukiya T, Nishimiya N, Samejima Y, Yamaguchi K, Suzuki M, Boone C D, Ozier I, Le Roy R J 2013 J. Mol. Spectrosc. 283 32

    [26]

    Jung Y J, Park M S, Kim Y S, Jung K H 1999 J. Chem. Phys. 111 4005

    [27]

    Kim T K, Park M S, Lee K W, Jung K H 2001 J. Chem. Phys. 115 10745

    [28]

    Zhu R S, Tang B F, Zhang X, Zhang B 2010 J. Phys. Chem. A 114 6188

    [29]

    Han Y C, Yuan K J, Hu W H, Yan T M, Cong S L 2008 J. Chem. Phys. 128 134303

    [30]

    Numico R, Keller A, Atabek O 1995 Phys. Rev. A 52 1298

    [31]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845

    [32]

    Jolicard G, Billing G D 1991 Chem. Phys. 149 261

    [33]

    Marston C C, Balintkurti G G 1989 J. Chem. Phys. 91 3571

    [34]

    Willner K, Dulieu O, Masnou-Seeuwsa F 2004 J. Chem. Phys. 120 548

    [35]

    Bandrauk A D, Shen H 1993 J. Chem. Phys. 99 1185

    [36]

    Chu T S, Zhang Y, Han K L 2010 Int. Rev. Phys. Chem. 25 201

  • [1] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [2] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [3] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [4] 李琼, 沈礼, 闫俊刚, 戴长建, 杨玉娜. Eu原子4f76p1/2ns自电离过程的动力学特性. 物理学报, 2016, 65(15): 153202. doi: 10.7498/aps.65.153202
    [5] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学. 物理学报, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [6] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [7] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰. 氟利昂F114B2分子在飞秒紫外辐射下的解离动力学. 物理学报, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [8] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究. 物理学报, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [9] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [10] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学. 物理学报, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [11] 刘晓静, 张佰军, 华中, 肖利, 刘兵, 吴义恒, 王清才, 王岩, 张丙新. 关于B0→π-l+ν l衰变过程分支比的计算. 物理学报, 2011, 60(4): 041301. doi: 10.7498/aps.60.041301
    [12] 韩丽丽, 戴振文, 王云鹏, 蒋占魁. 钯原子谱线的分支比测量. 物理学报, 2008, 57(6): 3425-3428. doi: 10.7498/aps.57.3425
    [13] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算. 物理学报, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [14] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [15] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] 吴向尧, 公丕锋, 苏希玉, 刘晓静, 范希会, 王 丽, 石宗华, 郭义庆. D→Klv~l衰变过程的研究. 物理学报, 2006, 55(7): 3375-3379. doi: 10.7498/aps.55.3375
    [17] 吴向尧, 尹新国, 郭义庆, 张晓波, 尹建华, 谢远亮. 关于B0→K0π0衰变过程研究. 物理学报, 2004, 53(4): 1015-1019. doi: 10.7498/aps.53.1015
    [18] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究. 物理学报, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [19] 张杰, 程丙英, 张道中, 王立华, 赵玉英, 王天眷. PbCl2分子的光解离. 物理学报, 1988, 37(5): 743-750. doi: 10.7498/aps.37.743
    [20] 林金谷, 苏阳, 单军, 杨君慧, 傅克坚. 紫外激光解离羰基铁生成超细粉末. 物理学报, 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
计量
  • 文章访问数:  4400
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-10-05

/

返回文章
返回