搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙离子调控微丝切割蛋白中A6亚基解折叠的单分子力谱研究

李鹏飞 曹毅 秦猛 王炜

钙离子调控微丝切割蛋白中A6亚基解折叠的单分子力谱研究

李鹏飞, 曹毅, 秦猛, 王炜
PDF
导出引用
导出核心图
  • 在生命活动中,金属离子扮演了非常重要的角色.微丝切割蛋白(adseverin)需要钙离子的活化才能行使其切割肌动蛋白微丝的功能.本文通过基于原子力显微镜的单分子力谱研究了微丝切割蛋白C端末的A6亚基在结合钙离子前后的力学解折叠机理.实验结果显示:在未结合钙离子时,A6的解折叠表现为两态过程;在结合钙离子后A6力学稳定性显著提高;同时,钙离子的结合使得A6解折叠过程中出现稳定的中间态.通过对中间态的链长的分析,我们推测了中间态对应着A6的N端部分解折叠.而这一部分的解折叠可以使得掩藏在该结构后的A5亚基中肌动蛋白微丝结合位点暴露,从而促使微丝切割蛋白执行功能.我们的实验结果为理解微丝切割蛋白的工作原理提供了新的实验证据.
      通信作者: 秦猛, qinmeng@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21522402,11674153,11374148,11334004)和国家重点基础研究发展计划(批准号:2013CB834100)资助的课题.
    [1]

    Lee J, Pena M M, Nose Y, Thiele D J 2002 J. Biol. Chem. 277 4380

    [2]

    Nag S, Larsson M, Robinson R C, Burtnick L D 2013 Cytoskeleton 70 360

    [3]

    Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin H L, Hayoz D 2004 Cell Mol. Life Sci. 61 2614

    [4]

    Chumnarnsilpa S, Lee W L, Nag S, Kannan B, Larsson M, Burtnick L D, Robinson R C 2009 Proc. Natl. Acad. Sci. USA 106 13719

    [5]

    L C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [6]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese)[钱辉, 陈虎, 严洁 2016 物理学报 65 188706]

    [7]

    Zhang W K, Wang C, Zhang X 2003 Chin. Sci. Bull. 48 7 (in Chinese)[张文科, 王驰, 张希 2003 科学通报 48 7]

    [8]

    Cui S X 2016 Acta Polymerica Sinica 2016(9) 1160

    [9]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [10]

    Zhang X, Zhang W K, Li H B, Shen J C 2000 Prog. Nat. Sci:Nat. Key Lab. Newsletter 10 385 (in Chinese)[张希, 张文科, 李宏斌, 沈家骢 2000 自然科学进展:国家重点实验室通讯 10 385]

    [11]

    Pang X C, Cheng B, Cui S X 2016 Chinese Journal of Polymer Science 34 578

    [12]

    Yu X T, Yang Z B, Wang X Y, Tang M J, Wang Z Z, Wang H B 2016 Prog. Biochem. Biophys. 43 28 (in Chinese)[于小婷, 杨忠波, 王鑫艳, 汤明杰, 王占忠, 王化斌 2016 生物化学与生物物理进展 43 28]

    [13]

    Xue Y, Li X, Li H, Zhang W 2014 Nat. Commun. 5 4348

    [14]

    Cheng B, Cui S X 2015 Polymer Mechanochemistry 369 97

    [15]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Ed. Engl. 56 5490

    [16]

    Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W 2012 Biophys. J. 102 2149

    [17]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [18]

    Luo Z, Cheng B, Cui S 2015 Langmuir 31 6107

    [19]

    Yang Z J, Yuan G H, Zhai W L, Yan J, Chen H 2016 Science China-Physics Mechanics Astronomy 59 680013

    [20]

    Schoeler C, Malinowska K H, Bernardi R C, Milles L F, Jobst M A, Durner E, Ott W, Fried D B, Bayer E A, Schulten K, Gaub H E, Nash M A 2014 Nat. Commun. 5 5635

    [21]

    Pfreundschuh M, Alsteens D, Wieneke R, Zhang C, Coughlin S R, Tampe R, Kobilka B K, Muller D J 2015 Nat. Commun. 6 8857

    [22]

    Dudko O K, Hummer G, Szabo A 2006 Phys. Rev. Lett. 96 108101

    [23]

    Dudko O K, Hummer G, Szabo A 2008 Proc. Natl. Acad. Sci. USA 105 15755

    [24]

    Bell G I 1978 Science 200 618

    [25]

    Rodriguez Del Castillo A, Lemaire S, Tchakarov L, Jeyapragasan M, Doucet J P, Vitale M L, Trifaro J M 1990 EMBO J. 9 43

    [26]

    Maekawa S, Sakai H 1990 J. Biol. Chem. 265 10940

    [27]

    Marcu M G, Zhang L, Elzagallaai A, Trifaro J M 1998 J. Biol. Chem. 273 3661

    [28]

    Cao Y, Lam C, Wang M, Li H 2006 Angew Chem. Int. Ed. Engl. 45 642

    [29]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

  • [1]

    Lee J, Pena M M, Nose Y, Thiele D J 2002 J. Biol. Chem. 277 4380

    [2]

    Nag S, Larsson M, Robinson R C, Burtnick L D 2013 Cytoskeleton 70 360

    [3]

    Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin H L, Hayoz D 2004 Cell Mol. Life Sci. 61 2614

    [4]

    Chumnarnsilpa S, Lee W L, Nag S, Kannan B, Larsson M, Burtnick L D, Robinson R C 2009 Proc. Natl. Acad. Sci. USA 106 13719

    [5]

    L C, Gao X, Li W, Xue B, Qin M, Burtnick L D, Zhou H, Cao Y, Robinson R C, Wang W 2014 Nat. Commun. 5 4623

    [6]

    Qian H, Chen H, Yan J 2016 Acta Phys. Sin. 65 188706 (in Chinese)[钱辉, 陈虎, 严洁 2016 物理学报 65 188706]

    [7]

    Zhang W K, Wang C, Zhang X 2003 Chin. Sci. Bull. 48 7 (in Chinese)[张文科, 王驰, 张希 2003 科学通报 48 7]

    [8]

    Cui S X 2016 Acta Polymerica Sinica 2016(9) 1160

    [9]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [10]

    Zhang X, Zhang W K, Li H B, Shen J C 2000 Prog. Nat. Sci:Nat. Key Lab. Newsletter 10 385 (in Chinese)[张希, 张文科, 李宏斌, 沈家骢 2000 自然科学进展:国家重点实验室通讯 10 385]

    [11]

    Pang X C, Cheng B, Cui S X 2016 Chinese Journal of Polymer Science 34 578

    [12]

    Yu X T, Yang Z B, Wang X Y, Tang M J, Wang Z Z, Wang H B 2016 Prog. Biochem. Biophys. 43 28 (in Chinese)[于小婷, 杨忠波, 王鑫艳, 汤明杰, 王占忠, 王化斌 2016 生物化学与生物物理进展 43 28]

    [13]

    Xue Y, Li X, Li H, Zhang W 2014 Nat. Commun. 5 4348

    [14]

    Cheng B, Cui S X 2015 Polymer Mechanochemistry 369 97

    [15]

    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H 2017 Angew. Chem. Int. Ed. Engl. 56 5490

    [16]

    Gao X, Qin M, Yin P, Liang J, Wang J, Cao Y, Wang W 2012 Biophys. J. 102 2149

    [17]

    Feng W, Wang Z, Zhang W 2017 Langmuir 33 1826

    [18]

    Luo Z, Cheng B, Cui S 2015 Langmuir 31 6107

    [19]

    Yang Z J, Yuan G H, Zhai W L, Yan J, Chen H 2016 Science China-Physics Mechanics Astronomy 59 680013

    [20]

    Schoeler C, Malinowska K H, Bernardi R C, Milles L F, Jobst M A, Durner E, Ott W, Fried D B, Bayer E A, Schulten K, Gaub H E, Nash M A 2014 Nat. Commun. 5 5635

    [21]

    Pfreundschuh M, Alsteens D, Wieneke R, Zhang C, Coughlin S R, Tampe R, Kobilka B K, Muller D J 2015 Nat. Commun. 6 8857

    [22]

    Dudko O K, Hummer G, Szabo A 2006 Phys. Rev. Lett. 96 108101

    [23]

    Dudko O K, Hummer G, Szabo A 2008 Proc. Natl. Acad. Sci. USA 105 15755

    [24]

    Bell G I 1978 Science 200 618

    [25]

    Rodriguez Del Castillo A, Lemaire S, Tchakarov L, Jeyapragasan M, Doucet J P, Vitale M L, Trifaro J M 1990 EMBO J. 9 43

    [26]

    Maekawa S, Sakai H 1990 J. Biol. Chem. 265 10940

    [27]

    Marcu M G, Zhang L, Elzagallaai A, Trifaro J M 1998 J. Biol. Chem. 273 3661

    [28]

    Cao Y, Lam C, Wang M, Li H 2006 Angew Chem. Int. Ed. Engl. 45 642

    [29]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

  • [1] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [2] 向天翔. 分子聚合物中间态耦合振动预离解理论. 物理学报, 1990, 39(3): 359-366. doi: 10.7498/aps.39.359
    [3] 周月华, 翁培焜, 郑林生. 中间成象式β谱仪. 物理学报, 1961, 74(6): 255-262. doi: 10.7498/aps.17.255
    [4] 周前红, 郭文康, 李辉. 保护气对切割弧特性影响的模拟研究. 物理学报, 2011, 60(2): 025214. doi: 10.7498/aps.60.025214
    [5] 王民, 房昌水. ADTGSP晶体热释电探测器的最佳切割方向. 物理学报, 1987, 36(1): 125-129. doi: 10.7498/aps.36.125
    [6] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射. 物理学报, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
    [7] 赵红娥, 高垣梅, 刘思敏, 黄春福, 郭 儒, 汪大云. c向切割掺杂LiNbO3晶体中的光耦合. 物理学报, 2003, 52(5): 1162-1167. doi: 10.7498/aps.52.1162
    [8] 高垣梅, 刘思敏, 郭 儒, 黄春福, 汪大云. Y向切割掺杂铌酸锂晶体中的光耦合. 物理学报, 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [9] 杨飞, 荣命哲, 吴翊, 史强, 刘增超, 马瑞光, 陈胜. 考虑栅片烧蚀金属蒸气的栅片切割空气电弧仿真与实验研究. 物理学报, 2011, 60(5): 055208. doi: 10.7498/aps.60.055208
    [10] 许京军, 张光寅, 刘思敏, 门丽秋. c向切割LiNbO3:Fe晶体薄片中的四波混频各向异性光散射. 物理学报, 1994, 43(12): 2059-2064. doi: 10.7498/aps.43.2059
    [11] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频 . 物理学报, 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [12] 沈环, 胡春龙, 邓绪兰. 超短脉冲激光场中间二氯苯的激发态动力学. 物理学报, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [13] 施建青, 林国成, 徐志君. 轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解. 物理学报, 2007, 56(2): 666-672. doi: 10.7498/aps.56.666
    [14] 房超, 孙立风, 蒋泽南. 朗之万方程及其在蛋白质折叠动力学中的应用. 物理学报, 2011, 60(6): 060502. doi: 10.7498/aps.60.060502
    [15] 胡 易. 一般切割面的铋硅族氧化物光折变增益特性及动态光栅优化. 物理学报, 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [16] 张尧, 张杨, 董振超. 单分子尺度的光量子态调控与单分子电致发光研究. 物理学报, 2018, 67(22): 223301. doi: 10.7498/aps.67.20181718
    [17] 陈昌远, 陆法林, 孙东升. Hulthén势散射态的解析解. 物理学报, 2007, 56(11): 6204-6208. doi: 10.7498/aps.56.6204
    [18] 周世平, 徐克西, 牛金海, 瞿 海. 混合配对态波函数方程的解. 物理学报, 1999, 48(2): 342-351. doi: 10.7498/aps.48.342
    [19] 陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华. 单分子动力学研究大肠杆菌单链结合蛋白与单链DNA的结合过程. 物理学报, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [20] 陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖. 单分子技术研究T7解旋酶的解旋与换链. 物理学报, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  338
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-06-30
  • 刊出日期:  2017-10-05

钙离子调控微丝切割蛋白中A6亚基解折叠的单分子力谱研究

  • 1. 南京大学物理学院, 固体微结构国家实验室, 南京 201193
  • 通信作者: 秦猛, qinmeng@nju.edu.cn
    基金项目: 

    国家自然科学基金(批准号:21522402,11674153,11374148,11334004)和国家重点基础研究发展计划(批准号:2013CB834100)资助的课题.

摘要: 在生命活动中,金属离子扮演了非常重要的角色.微丝切割蛋白(adseverin)需要钙离子的活化才能行使其切割肌动蛋白微丝的功能.本文通过基于原子力显微镜的单分子力谱研究了微丝切割蛋白C端末的A6亚基在结合钙离子前后的力学解折叠机理.实验结果显示:在未结合钙离子时,A6的解折叠表现为两态过程;在结合钙离子后A6力学稳定性显著提高;同时,钙离子的结合使得A6解折叠过程中出现稳定的中间态.通过对中间态的链长的分析,我们推测了中间态对应着A6的N端部分解折叠.而这一部分的解折叠可以使得掩藏在该结构后的A5亚基中肌动蛋白微丝结合位点暴露,从而促使微丝切割蛋白执行功能.我们的实验结果为理解微丝切割蛋白的工作原理提供了新的实验证据.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回