搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响

王波 房玉龙 尹甲运 刘庆彬 张志荣 郭艳敏 李佳 芦伟立 冯志红

表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响

王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红
PDF
导出引用
  • 基于范德瓦耳斯外延生长的氮化镓/石墨烯材料异质生长界面仅靠较弱的范德瓦耳斯力束缚,具有低位错、易剥离等优势,近年来引起了人们的广泛关注.采用NH3/H2混合气体对石墨烯表面进行预处理,研究了不同NH3/H2比对石墨烯表面形貌、拉曼散射的影响,探讨了石墨烯在NH3和H2混合气氛下的表面预处理机制,最后在石墨烯上外延生长了1.6 μm厚的GaN薄膜材料.实验结果表明:石墨烯中褶皱处的C原子更容易与气体发生刻蚀反应,刻蚀方向沿着褶皱进行;适当NH3/H2比的混合气体对石墨烯进行表面预处理可有效改善石墨烯上GaN材料的晶体质量.本研究提供了一种可有效提高GaN晶体质量的石墨烯表面预处理方法,可为进一步研究二维材料上高质量的GaN外延生长提供参考.
      通信作者: 房玉龙, yvloong@163.com
    [1]

    Huang R 2011 Nat. Nanotech. 6 537

    [2]

    Gupta P, Rahman A A, Hatui N, Parmar J B, Chalke B A, Bapat R D, Purandare S C, Deshmukh M M, Bhattacharya A 2013 Appl. Phys. Lett. 103 181108

    [3]

    Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H, Yi G C 2011 Adv. Mater. 23 4614

    [4]

    Loher T, Tomm Y, Pettenkofer C, Jaegermann W 1994 Appl. Phys. Lett. 65 555

    [5]

    Loher T, Tomm Y, Klein A, Su D 1996 J. Appl. Phys. 80 5718

    [6]

    Gupta P, Rahman A A, Hatui N, Gokhale M R, Deshmukh M M, Bhattacharya A 2013 J. Cryst. Growth 372 105

    [7]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [8]

    Chung K, Lee C H, Yi G C 2010 Science 330 655

    [9]

    Nepal N, Wheeler V D, Anderson T J, Kub F J, Mastro M A, Myers-Ward R L, Qadri S B, Freitas J A, Hernandez S C, Nyakiti L O, Walton S G, Gaskill K, Eddy C R 2013 Appl. Phys. Express 6 061003

    [10]

    Zhao Z D, Wang B, Xu W, Zhang H R, Chen Z Y, Yu G H 2015 Mater. Lett. 153 152

    [11]

    Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836

    [12]

    Balushi Z Y A, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81

    [13]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [14]

    Tamor M A, Vassell W C 1994 J. Appl. Phys. 76 3823

    [15]

    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S R P 1996 J. Appl. Phys. 80 440

    [16]

    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C 2006 Nano Lett. 6 2667

    [17]

    Graf D, Molitor F, Ensslin K 2007 Nano Lett. 7 238

    [18]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [19]

    Park P S, Reddy K M, Nath D N, Yang Z C, Padture N P, Rajan S 2013 Appl. Phys. Lett. 102 153501

    [20]

    Choubak S, Biron M, Levesque P L, Martel R, Desjardins P 2013 J. Phys. Chem. Lett. 4 1100

    [21]

    Choubak S, Levesque P L, Gaufres E, Biron M, Desjardins P, Martel R 2014 J. Phys. Chem. C 118 21532

    [22]

    Robinson Z R, Jernigan G G, Currie M 2015 Carbon 81 73

    [23]

    Fang L P, Yuan W, Wang B, Xiong Y 2016 Appl. Surf. Sci. 383 28

    [24]

    Delagrange S, Schuurman Y 2007 Catal. Today 121 204

    [25]

    Talbi D 1999 Chem. Phys. Lett. 313 626

    [26]

    Lee D, Shin I S, Jin L, Kim D, Park Y, Yoon E 2016 J. Cryst. Growth 444 9

    [27]

    Zheng C C, Ning J Q, Wu Z P, Wang J F, Zhao D H, Xu K, Gao J, Xu S J 2014 RSC Adv. 4 55430

    [28]

    Kisielowski C, Krger J, Ruvimov S, Suski T, AgerⅢ J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [29]

    Tripathy S, Lin V K X, Vicknesh S, Chua S J 2007 J. Appl. Phys. 101 063525

  • [1]

    Huang R 2011 Nat. Nanotech. 6 537

    [2]

    Gupta P, Rahman A A, Hatui N, Parmar J B, Chalke B A, Bapat R D, Purandare S C, Deshmukh M M, Bhattacharya A 2013 Appl. Phys. Lett. 103 181108

    [3]

    Lee C H, Kim Y J, Hong Y J, Jeon S R, Bae S, Hong B H, Yi G C 2011 Adv. Mater. 23 4614

    [4]

    Loher T, Tomm Y, Pettenkofer C, Jaegermann W 1994 Appl. Phys. Lett. 65 555

    [5]

    Loher T, Tomm Y, Klein A, Su D 1996 J. Appl. Phys. 80 5718

    [6]

    Gupta P, Rahman A A, Hatui N, Gokhale M R, Deshmukh M M, Bhattacharya A 2013 J. Cryst. Growth 372 105

    [7]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [8]

    Chung K, Lee C H, Yi G C 2010 Science 330 655

    [9]

    Nepal N, Wheeler V D, Anderson T J, Kub F J, Mastro M A, Myers-Ward R L, Qadri S B, Freitas J A, Hernandez S C, Nyakiti L O, Walton S G, Gaskill K, Eddy C R 2013 Appl. Phys. Express 6 061003

    [10]

    Zhao Z D, Wang B, Xu W, Zhang H R, Chen Z Y, Yu G H 2015 Mater. Lett. 153 152

    [11]

    Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836

    [12]

    Balushi Z Y A, Miyagi T, Lin Y C, Wang K, Calderin L, Bhimanapati G, Redwing J M, Robinson J A 2015 Surf. Sci. 634 81

    [13]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [14]

    Tamor M A, Vassell W C 1994 J. Appl. Phys. 76 3823

    [15]

    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva S R P 1996 J. Appl. Phys. 80 440

    [16]

    Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P C 2006 Nano Lett. 6 2667

    [17]

    Graf D, Molitor F, Ensslin K 2007 Nano Lett. 7 238

    [18]

    Casiraghi C, Pisana S, Novoselov K S, Geim A K, Ferrari A C 2007 Appl. Phys. Lett. 91 233108

    [19]

    Park P S, Reddy K M, Nath D N, Yang Z C, Padture N P, Rajan S 2013 Appl. Phys. Lett. 102 153501

    [20]

    Choubak S, Biron M, Levesque P L, Martel R, Desjardins P 2013 J. Phys. Chem. Lett. 4 1100

    [21]

    Choubak S, Levesque P L, Gaufres E, Biron M, Desjardins P, Martel R 2014 J. Phys. Chem. C 118 21532

    [22]

    Robinson Z R, Jernigan G G, Currie M 2015 Carbon 81 73

    [23]

    Fang L P, Yuan W, Wang B, Xiong Y 2016 Appl. Surf. Sci. 383 28

    [24]

    Delagrange S, Schuurman Y 2007 Catal. Today 121 204

    [25]

    Talbi D 1999 Chem. Phys. Lett. 313 626

    [26]

    Lee D, Shin I S, Jin L, Kim D, Park Y, Yoon E 2016 J. Cryst. Growth 444 9

    [27]

    Zheng C C, Ning J Q, Wu Z P, Wang J F, Zhao D H, Xu K, Gao J, Xu S J 2014 RSC Adv. 4 55430

    [28]

    Kisielowski C, Krger J, Ruvimov S, Suski T, AgerⅢ J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D, Davis R F 1996 Phys. Rev. B 54 17745

    [29]

    Tripathy S, Lin V K X, Vicknesh S, Chua S J 2007 J. Appl. Phys. 101 063525

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1931
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-07-19
  • 刊出日期:  2017-12-05

表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响

  • 1. 河北半导体研究所, 专用集成电路国家级重点实验室, 石家庄 050051
  • 通信作者: 房玉龙, yvloong@163.com

摘要: 基于范德瓦耳斯外延生长的氮化镓/石墨烯材料异质生长界面仅靠较弱的范德瓦耳斯力束缚,具有低位错、易剥离等优势,近年来引起了人们的广泛关注.采用NH3/H2混合气体对石墨烯表面进行预处理,研究了不同NH3/H2比对石墨烯表面形貌、拉曼散射的影响,探讨了石墨烯在NH3和H2混合气氛下的表面预处理机制,最后在石墨烯上外延生长了1.6 μm厚的GaN薄膜材料.实验结果表明:石墨烯中褶皱处的C原子更容易与气体发生刻蚀反应,刻蚀方向沿着褶皱进行;适当NH3/H2比的混合气体对石墨烯进行表面预处理可有效改善石墨烯上GaN材料的晶体质量.本研究提供了一种可有效提高GaN晶体质量的石墨烯表面预处理方法,可为进一步研究二维材料上高质量的GaN外延生长提供参考.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回