搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用质子能损检测气体靶区有效靶原子密度的实验研究

陈燕红 程锐 张敏 周贤明 赵永涛 王瑜玉 雷瑜 麻鹏鹏 王昭 任洁茹 马新文 肖国青

利用质子能损检测气体靶区有效靶原子密度的实验研究

陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青
PDF
导出引用
导出核心图
  • 准确测量气态靶区的有效靶原子密度能够提升离子与气体和离子与等离子体靶相互作用实验结果的精度和对物理过程的认识.实验中利用离子加速器引出的100 keV质子束穿过一定长度的氢气靶,对质子的剩余能量进行了精确测量,获得了在气体靶内的质子能损数据,结合已有的能损研究结果,重新标定了气体靶区内的有效靶原子密度.分别比较了能损、电离型真空计IonIVac ITR 90和薄膜电容型真空计Varian CDG-500的实验测量结果,对比了修正后的电离型真空计有效气压曲线,结果发现质子束能损的测量方式具有原位、高准确性、在线监测等突出优势,为诊断气态靶有效原子密度提供了新的方法.
      通信作者: 程锐, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn ; 赵永涛, chengrui@impcas.ac.cn;zhaoyongtao@xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2017YFA0402303)和国家自然科学基金(批准号:U1532263,11505248,11375034,11775042,11775278,11605147)资助的课题.
    [1]

    Bohr N 1913 Philos. Mag. 25 10

    [2]

    Hoffmann D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990 Phys. Rev. A 42 2313

    [3]

    Jacoby J, Hoffmann D H H, Laux W, Mller R W, Wahl H, Weyrich K, Boggasch E, Heimric B, Stöckl C, Wetzler H, Miyamoto S 1995 Phys. Rev. Lett. 74 1550

    [4]

    Grande P L, Schiwiztz G 1998 Phys. Rev. A 58 3796

    [5]

    Bethe H 1930 Ann. Phys. 397 325

    [6]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch D, Maynard G 1990 Laser Particle Beams 8 575

    [7]

    Koshkarev D G 2002 Las. Part. Beams 20 595

    [8]

    Deutsch C, Maynard G, Bimbot R, Gardes D, DellaNegra S, Dumail M, Kubica B, Richard A, Rivet M F, Servajean A, Fleurier C, Sanba A, Hoffmann D H H, Weyrich K, Wahl H 1989 Nucl. Inst. Meth. Phys. Res. A 278 38

    [9]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R,Haas R,Kunze H, Bimbot R, Gardes D, Rievt M F, Deutsch C, Fleurier C 1989 Nucl. Inst. Meth. Phys. Res. A 278 52

    [10]

    Servajean A, Gardes D, Bimbot R, Dumail M, Kubicard B, Richard A, Rivet M F, Fleurier C, Hong D, Deutsch C, Maynard G 1992 J. Appl. Phys. 71 2587

    [11]

    Casas D, Barriga-Carrasco M D, Rubio J, Moralea R 2014 Glob. Nest. J. 16 1085

    [12]

    Belyaev G, Basko M, Cherkasov A, Golubev A, Fertman A, Roudskoy I, Savin S, Sharkov B, Turtikov V, Arzumanov A, Borisenko A, Gorlachev I, Lysukhin S, Hoffmann D H H, Tauschwitz A 1996 Phys. Rev. E 53 2701

    [13]

    Hoffmann D H H, Weyrich K, Wahl H, Peter T, Meyer T V J, Jacoby J, Bimbot R, Gardès D, Rivet M, Dumail M, Fleurier C, Sanba A, Deutsch C, Maynard G, Noll R, Haas R, Arnold R, Masuimann S 1988 Z. Phys. A:Atom. Nucl. 330 339

    [14]

    Wang Y N, Ma T C, Gong Y 1993 Acta Phys. Sin. 42 631 (in Chinese)[王友年, 马腾才, 宫野 1993 物理学报 42 631]

    [15]

    Tsuneta S 1996 Astrophys. J. 456 840

    [16]

    Deng J C, Zhao Y T, Cheng R, Zhou X M, Peng H B, Wang Y Y, Lei Y, Liu S D, Sun Y B, Ren J R, Xiao J H, Ma L D, Xiao G Q, Gavrilin R, Savin S, Golubev A, Hoffmann D H H 2015 Acta Phys. Sin. 64 145202 (in Chinese)[邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, Gavrilin R, Savin S, Golubev A,Hoffmann D H H 2015 物理学报 64 145202]

    [17]

    Cheng R, Zhou X M, Sun Y B, Lei Y, Wang X, Xu G 2011 Phys. Scr. T114 014015

    [18]

    Lu T X 2000 Atomic Nuclear Physics (Vol. 2) (Beijing:Atomic Energy Press) pp55-56 (in Chinese)[卢希庭 2000 原子核物理(第二版)(北京:原子能出版社)第55–56页]

  • [1]

    Bohr N 1913 Philos. Mag. 25 10

    [2]

    Hoffmann D H H, Weyrich K, Wahl H, Gardés D, Bimbot R, Fleurier C 1990 Phys. Rev. A 42 2313

    [3]

    Jacoby J, Hoffmann D H H, Laux W, Mller R W, Wahl H, Weyrich K, Boggasch E, Heimric B, Stöckl C, Wetzler H, Miyamoto S 1995 Phys. Rev. Lett. 74 1550

    [4]

    Grande P L, Schiwiztz G 1998 Phys. Rev. A 58 3796

    [5]

    Bethe H 1930 Ann. Phys. 397 325

    [6]

    Gardes D, Bimbot R, Rivet M F, Servajean A, Fleurier A, Hong D, Deutsch D, Maynard G 1990 Laser Particle Beams 8 575

    [7]

    Koshkarev D G 2002 Las. Part. Beams 20 595

    [8]

    Deutsch C, Maynard G, Bimbot R, Gardes D, DellaNegra S, Dumail M, Kubica B, Richard A, Rivet M F, Servajean A, Fleurier C, Sanba A, Hoffmann D H H, Weyrich K, Wahl H 1989 Nucl. Inst. Meth. Phys. Res. A 278 38

    [9]

    Weyrich K, Hoffmann D H H, Jacoby J, Wahl H, Noll R,Haas R,Kunze H, Bimbot R, Gardes D, Rievt M F, Deutsch C, Fleurier C 1989 Nucl. Inst. Meth. Phys. Res. A 278 52

    [10]

    Servajean A, Gardes D, Bimbot R, Dumail M, Kubicard B, Richard A, Rivet M F, Fleurier C, Hong D, Deutsch C, Maynard G 1992 J. Appl. Phys. 71 2587

    [11]

    Casas D, Barriga-Carrasco M D, Rubio J, Moralea R 2014 Glob. Nest. J. 16 1085

    [12]

    Belyaev G, Basko M, Cherkasov A, Golubev A, Fertman A, Roudskoy I, Savin S, Sharkov B, Turtikov V, Arzumanov A, Borisenko A, Gorlachev I, Lysukhin S, Hoffmann D H H, Tauschwitz A 1996 Phys. Rev. E 53 2701

    [13]

    Hoffmann D H H, Weyrich K, Wahl H, Peter T, Meyer T V J, Jacoby J, Bimbot R, Gardès D, Rivet M, Dumail M, Fleurier C, Sanba A, Deutsch C, Maynard G, Noll R, Haas R, Arnold R, Masuimann S 1988 Z. Phys. A:Atom. Nucl. 330 339

    [14]

    Wang Y N, Ma T C, Gong Y 1993 Acta Phys. Sin. 42 631 (in Chinese)[王友年, 马腾才, 宫野 1993 物理学报 42 631]

    [15]

    Tsuneta S 1996 Astrophys. J. 456 840

    [16]

    Deng J C, Zhao Y T, Cheng R, Zhou X M, Peng H B, Wang Y Y, Lei Y, Liu S D, Sun Y B, Ren J R, Xiao J H, Ma L D, Xiao G Q, Gavrilin R, Savin S, Golubev A, Hoffmann D H H 2015 Acta Phys. Sin. 64 145202 (in Chinese)[邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, Gavrilin R, Savin S, Golubev A,Hoffmann D H H 2015 物理学报 64 145202]

    [17]

    Cheng R, Zhou X M, Sun Y B, Lei Y, Wang X, Xu G 2011 Phys. Scr. T114 014015

    [18]

    Lu T X 2000 Atomic Nuclear Physics (Vol. 2) (Beijing:Atomic Energy Press) pp55-56 (in Chinese)[卢希庭 2000 原子核物理(第二版)(北京:原子能出版社)第55–56页]

  • [1] 邓佳川, 赵永涛, 程锐, 周贤明, 彭海波, 王瑜玉, 雷瑜, 刘世东, 孙渊博, 任洁茹, 肖家浩, 麻礼东, 肖国青, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. 低能质子束在氢等离子体中的能损研究. 物理学报, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [2] 陈锋, 郑娜, 许海波. 质子照相中基于能量损失的密度重建. 物理学报, 2018, 67(20): 206101. doi: 10.7498/aps.67.20181039
    [3] 杨 欢, 高 矿, 张穗萌. 大能量损失小动量转移几何条件下氦原子(e, 2e)反应的理论研究. 物理学报, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [4] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [5] 杨海亮, 邱爱慈, 李静雅, 孙剑锋, 何小平, 汤俊萍, 王海洋, 黄建军, 任书庆, 邹丽丽, 杨 莉. 叠片法测量“闪光二号”加速器的高功率离子束能谱. 物理学报, 2005, 54(9): 4072-4078. doi: 10.7498/aps.54.4072
    [6] 高瑞军, 葛自明. 共面不对称条件下Ar原子(e, 2e)反应的三重微分截面. 物理学报, 2010, 59(3): 1702-1706. doi: 10.7498/aps.59.1702
    [7] 王桂秋, 王友年. 激光场对快速分子离子与固体相互作用的影响. 物理学报, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [8] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [9] 王友年, 马腾才, 宫野. 重离子束在热靶中的电子阻止本领与有效电荷数. 物理学报, 1993, 42(4): 631-639. doi: 10.7498/aps.42.631
    [10] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [11] 宫 野, 张建红, 王晓东, 刘金远, 刘 悦, 王晓钢, 马腾才, 吴 迪. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [12] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [13] 矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋. 超强激光与固体气体复合靶作用产生高能氦离子. 物理学报, 2017, 66(8): 085201. doi: 10.7498/aps.66.085201
    [14] 夏广昌. 一个适用于能量校正的靶室. 物理学报, 1964, 103(10): 1056-1057. doi: 10.7498/aps.20.1056
    [15] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 殷光裕, 何兴法. 六束激光对称辐照微球靶研究. 物理学报, 1981, 30(9): 1174-1179. doi: 10.7498/aps.30.1174
    [16] 高远, 翁甲强, 罗晓曙, 陈关荣, 方锦清. 小波函数反馈法实现对强流束晕混沌的有效控制. 物理学报, 2001, 50(3): 435-439. doi: 10.7498/aps.50.435
    [17] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [18] 宁振江, 李加兴, 郭忠言, 詹文龙, 王建松, 肖国青, 王全进, 王金川, 王猛, 王建峰, 陈志强. 质子滴线核12N在28Si靶上的核反应总截面测量. 物理学报, 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
    [19] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [20] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系. 物理学报, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
  • 引用本文:
    Citation:
计量
  • 文章访问数:  341
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-13
  • 修回日期:  2017-12-11
  • 刊出日期:  2018-02-20

利用质子能损检测气体靶区有效靶原子密度的实验研究

    基金项目: 

    国家重点基础研究发展计划(批准号:2017YFA0402303)和国家自然科学基金(批准号:U1532263,11505248,11375034,11775042,11775278,11605147)资助的课题.

摘要: 准确测量气态靶区的有效靶原子密度能够提升离子与气体和离子与等离子体靶相互作用实验结果的精度和对物理过程的认识.实验中利用离子加速器引出的100 keV质子束穿过一定长度的氢气靶,对质子的剩余能量进行了精确测量,获得了在气体靶内的质子能损数据,结合已有的能损研究结果,重新标定了气体靶区内的有效靶原子密度.分别比较了能损、电离型真空计IonIVac ITR 90和薄膜电容型真空计Varian CDG-500的实验测量结果,对比了修正后的电离型真空计有效气压曲线,结果发现质子束能损的测量方式具有原位、高准确性、在线监测等突出优势,为诊断气态靶有效原子密度提供了新的方法.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回