搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制

王兰若 钟源 李劲劲 屈继峰 钟青 曹文会 王雪深 周志强 付凯 石勇

用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制

王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇
PDF
导出引用
  • 量子噪声温度计系统可通过比较导体中电子运动的热噪声和量子电压参考噪声精密测量玻尔兹曼常数,其中量子电压噪声源所合成的量子电压参考噪声由一组超导约瑟夫森结阵产生.本文详细介绍了基于Nb/NbxSi1-x/Nb约瑟夫森结的量子电压噪声源芯片的设计、制备及测试;采用脉冲驱动模式,合成了具有量子精度的100 kHz交流量子电压信号.结果表明:本文所研制的噪声温度计核心芯片已具备了合成交流电压的功能,可为后续玻尔兹曼常数精密定值、重新定义及复现热力学温度研究提供核心器件.
      通信作者: 钟源, zhongyuan@nim.ac.cn;jinjinli@nim.ac.cn ; 李劲劲, zhongyuan@nim.ac.cn;jinjinli@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFF0200402)、国家自然科学基金(批准号:61771441)和国家自然科学基金青年基金(批准号:61701470)资助的课题.
    [1]

    Preston-Thomas H 1990 Metrologia 27 3

    [2]

    Mills I, Mohr P, Quinn T, Taylor B N, Williams E R 2006 Metrologia 43 227

    [3]

    Nyquist H 1928 Phys. Rev. 32 110

    [4]

    Johnson J B 1927 Nature 119 50

    [5]

    Brixy H 1971 Nucl. Instrum. Methods 97 75

    [6]

    Jeanneret B, Benz S P 2009 Eur. Phys. J. Special Topics 172 181

    [7]

    Benz S P, Dresselhaus P D, Martinis J M 2003 IEEE Trans. Instrum. Meas. 52 545

    [8]

    Benz S P, Dresselhaus P D, Burroughs C J 2011 IEEE Trans. Appl. Supercond. 21 681

    [9]

    Nam S W, Benz S P, Dresselhaus P D, Burroughs C J, Tew W L, White D R, Martinis J M 2005 IEEE Trans. Instrum. Meas. 54 653

    [10]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527

    [11]

    Yamazawa K, Urano C, Yamada T, Horie T, Yoshida S, Yamamori H, Kaneko N, Fukuyama Y, Maruyama M, Domae A, Tamba J, Kiryu S 2014 Int. J. Thermophys. 35 985

    [12]

    Maezawa M, Yamada T, Urano C 2014 J. Phys.:Conf. Ser. 507 042023

    [13]

    Cao W H, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304 (in Chinese)[曹文会, 李劲劲, 钟青, 郭晓玮, 贺青, 迟宗涛 2012 物理学报 61 170304]

    [14]

    Watanabe M, Dresselhaus P D, Benz S P 2006 IEEE Trans. Appl. Supercond. 16 49

    [15]

    Olaya D, Dresselhaus P D, Benz S P, Bjarnason J, Grossman E N 2009 IEEE Trans. Appl. Supercond. 19 144

    [16]

    Liu J S, Li J Y, Li T Z, Li T F, Wu W, Chen W 2009 IEEE Trans. Appl. Supercond. 19 245

    [17]

    Wang L R, Zhong Y, Li J J, Cao W H, 2018 Mater. Res. Exp. 5 046410

    [18]

    Quinn T J 1989 Metrologia 26 69

    [19]

    Zhou K L 2017 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[周琨荔 2017 博士学位论文(北京:清华大学)]

    [20]

    Qu J F, Fu Y F, Zhang J Q, Rogalla H, Pollarolo A, Benz S P 2013 IEEE Trans. Instrum. Meas. 62 1518

  • [1]

    Preston-Thomas H 1990 Metrologia 27 3

    [2]

    Mills I, Mohr P, Quinn T, Taylor B N, Williams E R 2006 Metrologia 43 227

    [3]

    Nyquist H 1928 Phys. Rev. 32 110

    [4]

    Johnson J B 1927 Nature 119 50

    [5]

    Brixy H 1971 Nucl. Instrum. Methods 97 75

    [6]

    Jeanneret B, Benz S P 2009 Eur. Phys. J. Special Topics 172 181

    [7]

    Benz S P, Dresselhaus P D, Martinis J M 2003 IEEE Trans. Instrum. Meas. 52 545

    [8]

    Benz S P, Dresselhaus P D, Burroughs C J 2011 IEEE Trans. Appl. Supercond. 21 681

    [9]

    Nam S W, Benz S P, Dresselhaus P D, Burroughs C J, Tew W L, White D R, Martinis J M 2005 IEEE Trans. Instrum. Meas. 54 653

    [10]

    Mohr P J, Taylor B N, Newell D B 2012 Rev. Mod. Phys. 84 1527

    [11]

    Yamazawa K, Urano C, Yamada T, Horie T, Yoshida S, Yamamori H, Kaneko N, Fukuyama Y, Maruyama M, Domae A, Tamba J, Kiryu S 2014 Int. J. Thermophys. 35 985

    [12]

    Maezawa M, Yamada T, Urano C 2014 J. Phys.:Conf. Ser. 507 042023

    [13]

    Cao W H, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304 (in Chinese)[曹文会, 李劲劲, 钟青, 郭晓玮, 贺青, 迟宗涛 2012 物理学报 61 170304]

    [14]

    Watanabe M, Dresselhaus P D, Benz S P 2006 IEEE Trans. Appl. Supercond. 16 49

    [15]

    Olaya D, Dresselhaus P D, Benz S P, Bjarnason J, Grossman E N 2009 IEEE Trans. Appl. Supercond. 19 144

    [16]

    Liu J S, Li J Y, Li T Z, Li T F, Wu W, Chen W 2009 IEEE Trans. Appl. Supercond. 19 245

    [17]

    Wang L R, Zhong Y, Li J J, Cao W H, 2018 Mater. Res. Exp. 5 046410

    [18]

    Quinn T J 1989 Metrologia 26 69

    [19]

    Zhou K L 2017 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese)[周琨荔 2017 博士学位论文(北京:清华大学)]

    [20]

    Qu J F, Fu Y F, Zhang J Q, Rogalla H, Pollarolo A, Benz S P 2013 IEEE Trans. Instrum. Meas. 62 1518

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2462
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-02-19
  • 刊出日期:  2019-05-20

用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制

    基金项目: 

    国家重点研发计划(批准号:2016YFF0200402)、国家自然科学基金(批准号:61771441)和国家自然科学基金青年基金(批准号:61701470)资助的课题.

摘要: 量子噪声温度计系统可通过比较导体中电子运动的热噪声和量子电压参考噪声精密测量玻尔兹曼常数,其中量子电压噪声源所合成的量子电压参考噪声由一组超导约瑟夫森结阵产生.本文详细介绍了基于Nb/NbxSi1-x/Nb约瑟夫森结的量子电压噪声源芯片的设计、制备及测试;采用脉冲驱动模式,合成了具有量子精度的100 kHz交流量子电压信号.结果表明:本文所研制的噪声温度计核心芯片已具备了合成交流电压的功能,可为后续玻尔兹曼常数精密定值、重新定义及复现热力学温度研究提供核心器件.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回