搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄带随机激励双稳压电悬臂梁响应机制与能量采集研究

吴娟娟 冷永刚 乔海 刘进军 张雨阳

窄带随机激励双稳压电悬臂梁响应机制与能量采集研究

吴娟娟, 冷永刚, 乔海, 刘进军, 张雨阳
PDF
导出引用
  • 具有中心频率的窄带随机振动是一种典型的环境振动,其振动特征与环境的变化密切相关.本文以双稳压电悬臂梁能量采集系统为研究对象,分析系统在不同磁铁间距下的等效线性固有频率特性,以带通滤波器输出一定带宽的窄带随机激励模拟环境振动,研究系统的响应和能量采集特征.研究表明,对于一定带宽的窄带随机激励,一方面系统始终存在一个固定的磁铁间距使其输出达到峰值,另一方面当激励中心频率在一定范围内变化时,系统还分别存在另外两个或一个不同磁铁间距也能使系统输出达到峰值,而且该峰值特性是系统在其等效线性固有频率处诱导双稳或单稳“共振”形成的.研究结果可为具有窄带随机激励特征的振动能量采集提供一定的理论和技术支持.
      通信作者: 冷永刚, leng_yg@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51675370)和天津市应用基础与前沿技术研究计划(批准号:15JCZDJC32200)资助的课题.
    [1]

    Daqaq M F, Masana R, Erturk A, Quinn D D 2014 Appl. Mech. Rev. 66 040801

    [2]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131

    [3]

    Wang H Y, Xie T, Shan X B, Yuan J B 2010 J. Xi'an Jiaotong Univ. 44 114 (in Chinese)[王红艳, 谢涛, 单小彪, 袁江波 2010 西安交通大学学报 44 114]

    [4]

    Priya S, Inman D J (translated by Huang J Q, Huang Q A) 2011 Energy Harvesting Technologies (Nanjing: Dongnan University Press) pp34-62 (in Chinese)[(普利亚S, 茵曼D J 著 (黄见秋, 黄庆安 译) 2011 能量收集技术 (南京: 东南大学出版社) 第34–62页]

    [5]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [6]

    Gammaitoni L, Neri I, Vocca H 2009 Appl. Phys. Lett. 94 164102

    [7]

    Ferrari M, Ferrari V, Guizzetti M, Andó B, Baglio S, Trigona C 2010 Sens. Actuat. A: Phys. 162 425

    [8]

    Ferrari M, Baù M, Guizzetti M, Ferrari V 2011 Sens. Actuat. A: Phys. 172 287

    [9]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese)[陈仲生, 杨拥民 2011 物理学报 60 074301]

    [10]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [11]

    Beeby S P, Wang L, Zhu D, Weddell A S, Merrett G V 2013 Smart Mater. Struct. 22 075022

    [12]

    Wischke M, Masur M, Kroner M, Woias P 2011 Smart Mater. Struct. 20 085014

    [13]

    Harne R L, Wang K W 2013 J. Vib. Acoust. 136 021009

    [14]

    Green P L, Papatheou E, Sims N D 2013 J. Intell. Mater. Syst. Struct. 24 1494

    [15]

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502 (in Chinese)[谭丹, 冷永刚, 范胜波, 高毓璣 2015 物理学报 64 060502]

    [16]

    Guo K K 2015 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)[郭抗抗 2015 博士学位论文 (天津: 天津大学)]

    [17]

    He Q, Daqaq M F 2015 J. Vib. Acoust. 137 021009

    [18]

    Daqaq M F 2010 J. Sound Vib. 329 3621

    [19]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [20]

    Barton D A W, Burrow S G, Clare L R 2010 J. Vib. Acoust. 132 021009

  • [1]

    Daqaq M F, Masana R, Erturk A, Quinn D D 2014 Appl. Mech. Rev. 66 040801

    [2]

    Roundy S, Wright P K, Rabaey J 2003 Comput. Commun. 26 1131

    [3]

    Wang H Y, Xie T, Shan X B, Yuan J B 2010 J. Xi'an Jiaotong Univ. 44 114 (in Chinese)[王红艳, 谢涛, 单小彪, 袁江波 2010 西安交通大学学报 44 114]

    [4]

    Priya S, Inman D J (translated by Huang J Q, Huang Q A) 2011 Energy Harvesting Technologies (Nanjing: Dongnan University Press) pp34-62 (in Chinese)[(普利亚S, 茵曼D J 著 (黄见秋, 黄庆安 译) 2011 能量收集技术 (南京: 东南大学出版社) 第34–62页]

    [5]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [6]

    Gammaitoni L, Neri I, Vocca H 2009 Appl. Phys. Lett. 94 164102

    [7]

    Ferrari M, Ferrari V, Guizzetti M, Andó B, Baglio S, Trigona C 2010 Sens. Actuat. A: Phys. 162 425

    [8]

    Ferrari M, Baù M, Guizzetti M, Ferrari V 2011 Sens. Actuat. A: Phys. 172 287

    [9]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese)[陈仲生, 杨拥民 2011 物理学报 60 074301]

    [10]

    Gao Y J, Leng Y G, Fan S B, Lai Z H 2014 Smart Mater. Struct. 23 095003

    [11]

    Beeby S P, Wang L, Zhu D, Weddell A S, Merrett G V 2013 Smart Mater. Struct. 22 075022

    [12]

    Wischke M, Masur M, Kroner M, Woias P 2011 Smart Mater. Struct. 20 085014

    [13]

    Harne R L, Wang K W 2013 J. Vib. Acoust. 136 021009

    [14]

    Green P L, Papatheou E, Sims N D 2013 J. Intell. Mater. Syst. Struct. 24 1494

    [15]

    Tan D, Leng Y G, Fan S B, Gao Y J 2015 Acta Phys. Sin. 64 060502 (in Chinese)[谭丹, 冷永刚, 范胜波, 高毓璣 2015 物理学报 64 060502]

    [16]

    Guo K K 2015 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)[郭抗抗 2015 博士学位论文 (天津: 天津大学)]

    [17]

    He Q, Daqaq M F 2015 J. Vib. Acoust. 137 021009

    [18]

    Daqaq M F 2010 J. Sound Vib. 329 3621

    [19]

    Masana R, Daqaq M F 2013 J. Sound Vib. 332 6755

    [20]

    Barton D A W, Burrow S G, Clare L R 2010 J. Vib. Acoust. 132 021009

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1735
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-10
  • 修回日期:  2018-07-30
  • 刊出日期:  2018-11-05

窄带随机激励双稳压电悬臂梁响应机制与能量采集研究

  • 1. 天津大学机械工程学院, 天津 300350;
  • 2. 卡特彼勒技术研发(中国)有限公司, 无锡 214028
  • 通信作者: 冷永刚, leng_yg@tju.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51675370)和天津市应用基础与前沿技术研究计划(批准号:15JCZDJC32200)资助的课题.

摘要: 具有中心频率的窄带随机振动是一种典型的环境振动,其振动特征与环境的变化密切相关.本文以双稳压电悬臂梁能量采集系统为研究对象,分析系统在不同磁铁间距下的等效线性固有频率特性,以带通滤波器输出一定带宽的窄带随机激励模拟环境振动,研究系统的响应和能量采集特征.研究表明,对于一定带宽的窄带随机激励,一方面系统始终存在一个固定的磁铁间距使其输出达到峰值,另一方面当激励中心频率在一定范围内变化时,系统还分别存在另外两个或一个不同磁铁间距也能使系统输出达到峰值,而且该峰值特性是系统在其等效线性固有频率处诱导双稳或单稳“共振”形成的.研究结果可为具有窄带随机激励特征的振动能量采集提供一定的理论和技术支持.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回