搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射

祁云平 周培阳 张雪伟 严春满 王向贤

基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射

祁云平, 周培阳, 张雪伟, 严春满, 王向贤
PDF
导出引用
  • 金属单缝纳米结构因为结构简单、易于集成,常用在基于表面等离极化激元(surface plasmon polaritons,SPPs)的纳米结构中构建光源.但是,金属亚波长单缝结构一直存在透射率低的问题,如何提高其透射率一直是研究的重点.为了更好地提高金属亚波长单缝的透射率,本文对之前文献提出的分布式布拉格反射镜(distributed bragg reflector,DBR)和金属银薄膜纳米缝结构进行改进,在金属银薄膜两侧设计凹槽.当TM偏振光由DBR侧入射至DBR-银纳米缝结构时,DBR-银膜界面上和银膜入射侧凹槽一起激发的塔姆激元(Tamm plasmon polaritons,TPPs)和SPPs,以及纳米缝和银膜出射侧凹槽对的SPPs同时激发,利用凹槽激发的SPPs和银膜表面处的TPPs-SPPs混合模式的干涉相长耦合作用,通过塔姆激元的局域场增强效应和两侧凹槽与单纳米缝的干涉相长耦合作用进一步提高了表面等离极化激元模式的激发效率,再加上纳米缝中的类法布里-珀罗腔共振效应,使纳米缝的透射率得到增强.本文采用有限元方法研究了DBR-银纳米缝结构上单纳米缝加凹槽的透射特性.经过一系列参数优化,使DBR-银纳米缝凹槽结构的最大透射率增加到0.22,相对于TiO2-银纳米缝结构的透射率(0.01)提高了22倍,比文献[23]得到的最大透射率0.166有所提高.研究结果在纳米光源设计、光子集成电路和光学信号传输等相关领域具有一定的应用价值.
      通信作者: 祁云平, yunpqi@126.com
    • 基金项目: 国家自然科学基金(批准号:61367005,61741119)和甘肃省自然科学基金-创新基地和人才计划(批准号:17JR5RA078)资助的课题.
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412

    [3]

    Otto A 1968 Z. Phys. 216 398

    [4]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [6]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [7]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [8]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [9]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [10]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [11]

    Bethe H A 1944 Phys. Rev. 66 163

    [12]

    Bouwkamp C J 1954 Rep. Proy. Phys. 17 35

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [15]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [16]

    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [17]

    Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265

    [18]

    Takakura Y 2001 Phys. Rev. Lett. 86 245601

    [19]

    Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 物理学报 66 117102]

    [20]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [21]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [22]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [23]

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207]

    [24]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [25]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [26]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [27]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 物理学报 64 114202]

    [28]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 物理学报 63 244207]

    [29]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874

    [2]

    Parsons J, Hendry E, Burrows C P, Auguie B, Sambles J R, Barnes W L 2009 Phys. Rev. B 79 073412

    [3]

    Otto A 1968 Z. Phys. 216 398

    [4]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [5]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [6]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [7]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [8]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [9]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [10]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [11]

    Bethe H A 1944 Phys. Rev. 66 163

    [12]

    Bouwkamp C J 1954 Rep. Proy. Phys. 17 35

    [13]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [14]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [15]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [16]

    Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [17]

    Astilent S, Lalanne Ph, M Palamaru 2000 Opt. Commun. 175 265

    [18]

    Takakura Y 2001 Phys. Rev. Lett. 86 245601

    [19]

    Qi Y P, Nan X H, Bai Y L, Wang X X 2017 Acta Phys. Sin. 66 117102 (in Chinese) [祁云平, 南向红, 摆玉龙, 王向贤 2017 物理学报 66 117102]

    [20]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [21]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [22]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [23]

    Lu Y Q, Cheng X Y, Xu M, Xu J, Wang J 2016 Acta Phys. Sin. 65 204207 (in Chinese) [陆云清, 成心怡, 许敏, 许吉, 王瑾 2016 物理学报 65 204207]

    [24]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [25]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [26]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [27]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese) [张振清, 陆海, 王少华, 魏泽勇, 江海涛, 李云辉 2015 物理学报 64 114202]

    [28]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese) [陈颖, 范卉青, 卢波 2014 物理学报 63 244207]

    [29]

    Kavokin A V, Shelykh I A, Malpuech G 2005 Phys. Rev. B 72 233102

    [30]

    Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1959
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-16
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-05-20

基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射

  • 1. 西北师范大学物理与电子工程学院, 甘肃省智能信息技术与应用工程研究中心, 兰州 730070;
  • 2. 兰州理工大学理学院, 兰州 730050
  • 通信作者: 祁云平, yunpqi@126.com
    基金项目: 

    国家自然科学基金(批准号:61367005,61741119)和甘肃省自然科学基金-创新基地和人才计划(批准号:17JR5RA078)资助的课题.

摘要: 金属单缝纳米结构因为结构简单、易于集成,常用在基于表面等离极化激元(surface plasmon polaritons,SPPs)的纳米结构中构建光源.但是,金属亚波长单缝结构一直存在透射率低的问题,如何提高其透射率一直是研究的重点.为了更好地提高金属亚波长单缝的透射率,本文对之前文献提出的分布式布拉格反射镜(distributed bragg reflector,DBR)和金属银薄膜纳米缝结构进行改进,在金属银薄膜两侧设计凹槽.当TM偏振光由DBR侧入射至DBR-银纳米缝结构时,DBR-银膜界面上和银膜入射侧凹槽一起激发的塔姆激元(Tamm plasmon polaritons,TPPs)和SPPs,以及纳米缝和银膜出射侧凹槽对的SPPs同时激发,利用凹槽激发的SPPs和银膜表面处的TPPs-SPPs混合模式的干涉相长耦合作用,通过塔姆激元的局域场增强效应和两侧凹槽与单纳米缝的干涉相长耦合作用进一步提高了表面等离极化激元模式的激发效率,再加上纳米缝中的类法布里-珀罗腔共振效应,使纳米缝的透射率得到增强.本文采用有限元方法研究了DBR-银纳米缝结构上单纳米缝加凹槽的透射特性.经过一系列参数优化,使DBR-银纳米缝凹槽结构的最大透射率增加到0.22,相对于TiO2-银纳米缝结构的透射率(0.01)提高了22倍,比文献[23]得到的最大透射率0.166有所提高.研究结果在纳米光源设计、光子集成电路和光学信号传输等相关领域具有一定的应用价值.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回