搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油滴撞击油膜层内气泡的变形与破裂过程的数值模拟

周剑宏 童宝宏 王伟 苏家磊

油滴撞击油膜层内气泡的变形与破裂过程的数值模拟

周剑宏, 童宝宏, 王伟, 苏家磊
PDF
导出引用
  • 旋转工作的机械零部件和机械设备的润滑系统工作过程中普遍存在着油滴和油膜的碰撞行为,这一行为易引起气泡夹带现象.气泡将对油滴撞击油膜时的运动过程和附壁油膜层的形成质量造成不可忽视的影响.基于耦合的水平集-体积分数方法,对油滴撞击含气泡油膜的行为进行数值模拟研究,考察油膜层内气泡的变形运动过程,分析气泡大小和位置等因素对撞击过程中气泡变形特征参数的影响规律,并探讨气泡破裂的动力学机制.研究表明,随着气泡直径的增大,油滴撞击含气泡油膜后气泡会依次出现自由表面破裂、稳定变形以及油膜内部破裂等现象;直径d=20 m的气泡能较稳定地存在于油膜层内,同时该值也是气泡发生自由表面破裂和油膜内部破裂的临界值.此外,气泡所在位置同样对气泡变形历程有一定影响,气泡越接近油膜表面,其变形量越大;位于油膜底层的气泡会附着在壁面上.在自由表面破裂和油膜内部破裂过程中,气泡破裂是由气-液界面不稳定引起的,表面张力对这两种现象起重要作用;而黏性剪切力对油膜内部破裂现象也有着不可忽视的影响.
      通信作者: 童宝宏, bhtong@ahut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51475135)、清华大学摩擦学国家重点实验室开放基金(批准号:SKLTKF17B01)和安徽工业大学研究生创新基金(批准号:2015040)资助的课题.
    [1]

    Peduto D 2015 Ph. D. Dissertation (Karlsruhe: Karlsruhe Institute of Technology)

    [2]

    Rioboo R, Bauthier C, Conti J, Vou M, de Coninck J 2003 Exp. Fluids 35 648

    [3]

    Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965

    [4]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601(in Chinese) [郭加宏, 戴世强, 代钦 2010 物理学报 59 2601]

    [5]

    Song Y C, Ning Z, Sun C H, Lyu M, Yan K, Fu J 2013 Chin. J. Theor. Appl. Mech. 45 833(in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 力学学报 45 833]

    [6]

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705(in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705]

    [7]

    Bisighini A 2010 Ph. D. Dissertation (Bergamo: University of Bergamo)

    [8]

    Rein M 1996 J. Fluid Mech. 306 145

    [9]

    Blanchette F, Bigioni T P 2009 J. Fluid Mech. 620 333

    [10]

    Chen X, Mandre S, Feng J J 2006 Phys. Fluids 18 051705

    [11]

    Ray B, Biswas G, Sharma A 2010 J. Fluid Mech. 655 72

    [12]

    Thoraval M J, Li Y, Thoroddsen S T 2016 Phys. Rev. E 93 033128

    [13]

    Pumphrey H C, Elmore P A 1990 J. Fluid Mech. 220 539

    [14]

    Pumphrey H C, Crum L A, Bj rn L 1989 J. Acoust. Soc. Am. 85 1518

    [15]

    Oguz H N, Prosperetti A 1990 J. Fluid Mech. 219 143

    [16]

    Zou J, Ji C, Yuan B G, Ren Y L, Ruan X D, Fu X 2012 Phys. Fluids 24 057101

    [17]

    Wang A B, Kuan C C, Tsai P H 2013 Phys. Fluids 25 1518

    [18]

    Deng Q, Anilkumar A V, Wang T G 2007 J. Fluid Mech. 578 119

    [19]

    Thoroddsen S T, Thoaval M T, Takehara K, Etoh T G 2012 J. Fluid Mech. 708 469

    [20]

    Sigler J, Mesler R 1990 J. Colloid Interface Sci. 134 459

    [21]

    Saylor J R, Bounds G D 2012 AIChE J. 58 3841

    [22]

    Sussman M, Puckett E G 2000 J. Comput. Phys. 162 301

    [23]

    Guo Y L, Wei L, Liang G T, Shen S Q 2014 Int. Commun. Heat Mass. 53 26

    [24]

    Wang Z, Li Y, Huang B, Gao D M 2016 J. Mech. Sci. Technol. 30 2547

    [25]

    Ohta M, Kikuchi D, Yoshida Y, Sussman M 2011 Int. J. Multiphase Flow 37 1059

    [26]

    Fan W, Qi T, Sun Y W, Zhu P, Chen H 2016 Chem. Eng. Technol. 39 1895

    [27]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [28]

    Cossali G E, Marengo M, Coghe A, Zhdanov S 2004 Exp. Fluids 36 888

    [29]

    Feonychev A I 2007 J. Eng. Phys. Thermophys. 80 961

  • [1]

    Peduto D 2015 Ph. D. Dissertation (Karlsruhe: Karlsruhe Institute of Technology)

    [2]

    Rioboo R, Bauthier C, Conti J, Vou M, de Coninck J 2003 Exp. Fluids 35 648

    [3]

    Okawa T, Shiraishi T, Mori T 2006 Exp. Fluids 41 965

    [4]

    Guo J H, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601(in Chinese) [郭加宏, 戴世强, 代钦 2010 物理学报 59 2601]

    [5]

    Song Y C, Ning Z, Sun C H, Lyu M, Yan K, Fu J 2013 Chin. J. Theor. Appl. Mech. 45 833(in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 力学学报 45 833]

    [6]

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705(in Chinese) [梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705]

    [7]

    Bisighini A 2010 Ph. D. Dissertation (Bergamo: University of Bergamo)

    [8]

    Rein M 1996 J. Fluid Mech. 306 145

    [9]

    Blanchette F, Bigioni T P 2009 J. Fluid Mech. 620 333

    [10]

    Chen X, Mandre S, Feng J J 2006 Phys. Fluids 18 051705

    [11]

    Ray B, Biswas G, Sharma A 2010 J. Fluid Mech. 655 72

    [12]

    Thoraval M J, Li Y, Thoroddsen S T 2016 Phys. Rev. E 93 033128

    [13]

    Pumphrey H C, Elmore P A 1990 J. Fluid Mech. 220 539

    [14]

    Pumphrey H C, Crum L A, Bj rn L 1989 J. Acoust. Soc. Am. 85 1518

    [15]

    Oguz H N, Prosperetti A 1990 J. Fluid Mech. 219 143

    [16]

    Zou J, Ji C, Yuan B G, Ren Y L, Ruan X D, Fu X 2012 Phys. Fluids 24 057101

    [17]

    Wang A B, Kuan C C, Tsai P H 2013 Phys. Fluids 25 1518

    [18]

    Deng Q, Anilkumar A V, Wang T G 2007 J. Fluid Mech. 578 119

    [19]

    Thoroddsen S T, Thoaval M T, Takehara K, Etoh T G 2012 J. Fluid Mech. 708 469

    [20]

    Sigler J, Mesler R 1990 J. Colloid Interface Sci. 134 459

    [21]

    Saylor J R, Bounds G D 2012 AIChE J. 58 3841

    [22]

    Sussman M, Puckett E G 2000 J. Comput. Phys. 162 301

    [23]

    Guo Y L, Wei L, Liang G T, Shen S Q 2014 Int. Commun. Heat Mass. 53 26

    [24]

    Wang Z, Li Y, Huang B, Gao D M 2016 J. Mech. Sci. Technol. 30 2547

    [25]

    Ohta M, Kikuchi D, Yoshida Y, Sussman M 2011 Int. J. Multiphase Flow 37 1059

    [26]

    Fan W, Qi T, Sun Y W, Zhu P, Chen H 2016 Chem. Eng. Technol. 39 1895

    [27]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [28]

    Cossali G E, Marengo M, Coghe A, Zhdanov S 2004 Exp. Fluids 36 888

    [29]

    Feonychev A I 2007 J. Eng. Phys. Thermophys. 80 961

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1928
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-02-23
  • 刊出日期:  2018-06-05

油滴撞击油膜层内气泡的变形与破裂过程的数值模拟

  • 1. 安徽工业大学机械工程学院, 马鞍山 243032;
  • 2. 合肥工业大学摩擦学研究所, 合肥 230009
  • 通信作者: 童宝宏, bhtong@ahut.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51475135)、清华大学摩擦学国家重点实验室开放基金(批准号:SKLTKF17B01)和安徽工业大学研究生创新基金(批准号:2015040)资助的课题.

摘要: 旋转工作的机械零部件和机械设备的润滑系统工作过程中普遍存在着油滴和油膜的碰撞行为,这一行为易引起气泡夹带现象.气泡将对油滴撞击油膜时的运动过程和附壁油膜层的形成质量造成不可忽视的影响.基于耦合的水平集-体积分数方法,对油滴撞击含气泡油膜的行为进行数值模拟研究,考察油膜层内气泡的变形运动过程,分析气泡大小和位置等因素对撞击过程中气泡变形特征参数的影响规律,并探讨气泡破裂的动力学机制.研究表明,随着气泡直径的增大,油滴撞击含气泡油膜后气泡会依次出现自由表面破裂、稳定变形以及油膜内部破裂等现象;直径d=20 m的气泡能较稳定地存在于油膜层内,同时该值也是气泡发生自由表面破裂和油膜内部破裂的临界值.此外,气泡所在位置同样对气泡变形历程有一定影响,气泡越接近油膜表面,其变形量越大;位于油膜底层的气泡会附着在壁面上.在自由表面破裂和油膜内部破裂过程中,气泡破裂是由气-液界面不稳定引起的,表面张力对这两种现象起重要作用;而黏性剪切力对油膜内部破裂现象也有着不可忽视的影响.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回