搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析

尹霄丽 郭翊麟 闫浩 崔小舟 常欢 田清华 吴国华 张琦 刘博 忻向军

汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析

尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军
PDF
导出引用
  • 携带轨道角动量的汉克-贝塞尔(Hankel-Bessel,HB)光束具有无衍射和自聚焦特性,用来作为信息传输的载体有望增大信息传输容量.基于Rytov近似理论,推导得到了HB涡旋光束经过海洋水平弱湍流信道后的螺旋相位谱的解析表达式,并利用数值仿真方法研究了海洋湍流参数对轨道角动量模式探测概率的影响.结果表明,海洋湍流导致发射轨道角动量模式的探测概率下降,出现模式串扰和螺旋相位谱扩展.海洋湍流对HB涡旋光束的负面影响随着轨道角动量模式数、传输距离、温度方差耗散率的增加而增强,随湍流动能耗散率的增加而减弱.HB涡旋光束受以盐度波动驱动的海洋湍流的负面影响更大.另外,在弱湍流及几十米传输距离条件下,HB涡旋光束的传输性能要差于最佳束腰大小设置的拉盖尔-高斯涡旋光束.这些结果有望为海洋环境水下光通信链路的实现提供一定的参考价值.
      通信作者: 尹霄丽, yinxl@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575027,61471051,61575026)资助的课题.
    [1]

    Baghdady J, Miller K, Osler S, Morgan K, Li W Z, Johnson E, Cochenour B 2016 SPIE Defense + Security Baltimore, United States, April 17-21, 2016 p98270G

    [2]

    Ren Y X, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G D, Cao Y W, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306

    [3]

    Doniec M, Detweiler C, Vasilescu I, Rus D 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems Taipei, Taiwan, October 18-22, 2010 p4017

    [4]

    Gabriel C, Khalighi A, Bourennane S, Lon P, Rigaud V 2012 Egu. General Assembly 14 2685

    [5]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Samuel D, Moshe T, Willner A E 2012 Nature Photon. 6 488

    [6]

    Baghdady J, Kelly J, Miller K, Morgan K, Li W Z, Johnson E 2016 OCEANS 2016 MTS/IEEE Monterey, United States, September 19-23, 2016 p1

    [7]

    Abderrahmen T, Carmelo R G, Angela D, Bienvenu N, Amine B S, Mourad Z, Andrew F 2016 Sci. Rep. 6 27674

    [8]

    Cui X Z, Yin X L, Chang H, Zhang Z C, Wang Y J, Wu G H 2017 Chin. Phys. B 26 114207

    [9]

    Baghdady J, Miller K, Morgan K, Byrd M, Osler S, Ragusa R, Li W Z, Cochenour B M, Johnson E G 2016 Opt. Express 24 9794

    [10]

    Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q, Zhang D 2016 Appl. Opt. 55 4642

    [11]

    Viola S, Valyrakis M, Kelly A, Lavery M P 2016 Lasers and Electro-Optics IEEE San Jose, United States, June 5-10, 2016 pSW1F.3

    [12]

    Liu Z L, Chen J L, Zhao D M 2017 Appl. Opt. 56 3577

    [13]

    Cheng M J, Guo L X, Li J T, Zhang Y X 2017 IEEE Photon. J. 8 1

    [14]

    Wu G H, Tong C M, Cheng M J, Peng P 2016 Chin. Opt. Lett. 14 6

    [15]

    Zhu Y, Liu X J, Gao J, Zhang Y X, Zhao F S 2014 Opt. Express 22 7765

    [16]

    Vasara A, Turunen J, Friberg A T 1989 J. Opt. Soc. Am. A 6 1748

    [17]

    Herman R M, Wiggins T A 1991 J. Opt. Soc. Am. A 8 932

    [18]

    Zhu Y, Zhang L C, Zhang Y X 2016 Chin. Opt. Lett. 14 54

    [19]

    Cheng M J, Guo L X, Zhang Y X 2016 Chin. J. Radio 31 737(in Chinese) [程明建, 郭立新, 张逸新 2016 电波科学学报 31 737]

    [20]

    Ke X Z, Chen J, Yang Y M 2014 Acta Phys. Sin. 63 150301(in Chinese) [柯熙政, 谌娟, 杨一明 2014 物理学报 63 150301]

    [21]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [22]

    Ata Y, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552

    [23]

    Lu W, Liu L R, Sun J F 2006 J. Opt. A: Pure Appl. Opt. 8 1052

  • [1]

    Baghdady J, Miller K, Osler S, Morgan K, Li W Z, Johnson E, Cochenour B 2016 SPIE Defense + Security Baltimore, United States, April 17-21, 2016 p98270G

    [2]

    Ren Y X, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G D, Cao Y W, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306

    [3]

    Doniec M, Detweiler C, Vasilescu I, Rus D 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems Taipei, Taiwan, October 18-22, 2010 p4017

    [4]

    Gabriel C, Khalighi A, Bourennane S, Lon P, Rigaud V 2012 Egu. General Assembly 14 2685

    [5]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Samuel D, Moshe T, Willner A E 2012 Nature Photon. 6 488

    [6]

    Baghdady J, Kelly J, Miller K, Morgan K, Li W Z, Johnson E 2016 OCEANS 2016 MTS/IEEE Monterey, United States, September 19-23, 2016 p1

    [7]

    Abderrahmen T, Carmelo R G, Angela D, Bienvenu N, Amine B S, Mourad Z, Andrew F 2016 Sci. Rep. 6 27674

    [8]

    Cui X Z, Yin X L, Chang H, Zhang Z C, Wang Y J, Wu G H 2017 Chin. Phys. B 26 114207

    [9]

    Baghdady J, Miller K, Morgan K, Byrd M, Osler S, Ragusa R, Li W Z, Cochenour B M, Johnson E G 2016 Opt. Express 24 9794

    [10]

    Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q, Zhang D 2016 Appl. Opt. 55 4642

    [11]

    Viola S, Valyrakis M, Kelly A, Lavery M P 2016 Lasers and Electro-Optics IEEE San Jose, United States, June 5-10, 2016 pSW1F.3

    [12]

    Liu Z L, Chen J L, Zhao D M 2017 Appl. Opt. 56 3577

    [13]

    Cheng M J, Guo L X, Li J T, Zhang Y X 2017 IEEE Photon. J. 8 1

    [14]

    Wu G H, Tong C M, Cheng M J, Peng P 2016 Chin. Opt. Lett. 14 6

    [15]

    Zhu Y, Liu X J, Gao J, Zhang Y X, Zhao F S 2014 Opt. Express 22 7765

    [16]

    Vasara A, Turunen J, Friberg A T 1989 J. Opt. Soc. Am. A 6 1748

    [17]

    Herman R M, Wiggins T A 1991 J. Opt. Soc. Am. A 8 932

    [18]

    Zhu Y, Zhang L C, Zhang Y X 2016 Chin. Opt. Lett. 14 54

    [19]

    Cheng M J, Guo L X, Zhang Y X 2016 Chin. J. Radio 31 737(in Chinese) [程明建, 郭立新, 张逸新 2016 电波科学学报 31 737]

    [20]

    Ke X Z, Chen J, Yang Y M 2014 Acta Phys. Sin. 63 150301(in Chinese) [柯熙政, 谌娟, 杨一明 2014 物理学报 63 150301]

    [21]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [22]

    Ata Y, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552

    [23]

    Lu W, Liu L R, Sun J F 2006 J. Opt. A: Pure Appl. Opt. 8 1052

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2298
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-02-24
  • 刊出日期:  2018-06-05

汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析

  • 1. 北京邮电大学电子工程学院, 北京 100876;
  • 2. 北京邮电大学, 天地互联与融合北京市重点实验室, 北京 100876;
  • 3. 北京邮电大学理学院, 北京 100876;
  • 4. 南京信息工程大学物理与光电学院, 南京 210044
  • 通信作者: 尹霄丽, yinxl@bupt.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61575027,61471051,61575026)资助的课题.

摘要: 携带轨道角动量的汉克-贝塞尔(Hankel-Bessel,HB)光束具有无衍射和自聚焦特性,用来作为信息传输的载体有望增大信息传输容量.基于Rytov近似理论,推导得到了HB涡旋光束经过海洋水平弱湍流信道后的螺旋相位谱的解析表达式,并利用数值仿真方法研究了海洋湍流参数对轨道角动量模式探测概率的影响.结果表明,海洋湍流导致发射轨道角动量模式的探测概率下降,出现模式串扰和螺旋相位谱扩展.海洋湍流对HB涡旋光束的负面影响随着轨道角动量模式数、传输距离、温度方差耗散率的增加而增强,随湍流动能耗散率的增加而减弱.HB涡旋光束受以盐度波动驱动的海洋湍流的负面影响更大.另外,在弱湍流及几十米传输距离条件下,HB涡旋光束的传输性能要差于最佳束腰大小设置的拉盖尔-高斯涡旋光束.这些结果有望为海洋环境水下光通信链路的实现提供一定的参考价值.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回