搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴撞击圆柱内表面的数值研究

李玉杰 黄军杰 肖旭斌

液滴撞击圆柱内表面的数值研究

李玉杰, 黄军杰, 肖旭斌
PDF
导出引用
导出核心图
  • 针对液滴撞击圆柱内表面的过程,利用基于相场的格子Boltzmann方法模拟液滴以不同初速度、从不同初始高度、撞击不同大小的圆柱内表面时液滴的形态变化,分析了液滴自身物性(如密度和黏性等)和圆柱内表面润湿性等因素对撞击现象的具体影响.研究发现:撞击韦伯数、密度比及动力黏性比、圆柱半径等对液滴撞击后沿圆柱内表面的铺展均有一定影响,较高的韦伯数下液滴可能会发生分裂;液滴初始高度对大密度比和动力黏性比的撞击影响较小;液滴反弹现象可能出现在接触角较大时;重力作用会抑制撞击后液滴的振荡.
      通信作者: 黄军杰, jjhuang@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11202250)资助的课题.
    [1]

    Guo Y X, Liu Y Z, Dong W, Lei G L, Zhu J J 2016 Acta Aerodyn. Sin. 34 573 (in Chinese) [郭宇翔, 刘荫泽, 董威, 雷桂林, 朱剑鋆 2016 空气动力学报 34 573]

    [2]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [3]

    Han F H, Zhang C M, Wang Y X 1995 J. Beijing Univ. Aeron. Astron. 21 16 (in Chinese) [韩凤华, 张朝民, 王跃欣 1995 北京航空航天大学学报 21 16]

    [4]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Technol. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [5]

    Fan Y 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [范瑶 2016 硕士学位论文 (重庆: 重庆大学)]

    [6]

    Wang Y E, Zhou J H, Qin Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock 31 51 (in Chinese) [汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51]

    [7]

    Li Y P, Wang H R 2009 J. Xi'an Jiaotong Univ. 43 21 (in Chinese) [李彦鹏, 王焕然 2009 西安交通大学学报 43 21]

    [8]

    Huang J J, Wu J, Huang H 2018 Eur. Phys. J. E 41 17

    [9]

    Shen S Q, Bi F F, Guo Y L 2012 Int. J. Heat Mass Tran. 55 6938

    [10]

    Song Y C, Ning Z, Sun C H, L M, Yan K, Fu J 2013 T. CSICE 31 531 (in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 内燃机学报 31 531]

    [11]

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 CIESC J. 66 1667 (in Chinese) [郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 66 1667]

    [12]

    Ling J 2016 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [凌俊 2016 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Huang J J, Huang H B, Shu C, Chew Y T, Wang S L 2013 J. Phys. A: Math. Theor. 46 55501

    [14]

    Lee T 2009 Compu. Math. Appl. 58 987

    [15]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [16]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [17]

    Lee H G, Kim J 2011 Comput. Fluids 44 178

    [18]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708

    [19]

    Huang J J, Huang H B, Wang X Z 2015 Int. J. Numer. Meth. Fluids 77 123

    [20]

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese) [高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702]

    [21]

    Shen S Q, Yu H, Guo Y L, Liang G T 2013 J. Therm. Sci. Technol. 12 20 (in Chinese) [沈胜强, 于欢, 郭亚丽, 梁刚涛 2013 热科学与技术 12 20]

    [22]

    Yue P T, Zhou C F, Feng J J 2010 J. Fluid Mech. 645 279

    [23]

    Wen B H, Zhang C Y, Fang H P 2017 Sci. Sin.: Phys. Mech. Astron. 47 070012 (in Chinese) [闻炳海, 张超英, 方海平 2017 中国科学: 物理学 力学 天文学 47 070012]

    [24]

    Shao J Y, Shu C, Huang H B, Chew Y T 2014 Phys. Rev. E 89 033309

    [25]

    Prosperetti A 1981 Phys. Fluids 24 1217

    [26]

    Liu Y, Tan P, Xu L 2015 PNAS 112 3280

    [27]

    Yue P, Zhou C, Feng J J 2007 J. Comput. Phys. 223 1

  • [1]

    Guo Y X, Liu Y Z, Dong W, Lei G L, Zhu J J 2016 Acta Aerodyn. Sin. 34 573 (in Chinese) [郭宇翔, 刘荫泽, 董威, 雷桂林, 朱剑鋆 2016 空气动力学报 34 573]

    [2]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [3]

    Han F H, Zhang C M, Wang Y X 1995 J. Beijing Univ. Aeron. Astron. 21 16 (in Chinese) [韩凤华, 张朝民, 王跃欣 1995 北京航空航天大学学报 21 16]

    [4]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Technol. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [5]

    Fan Y 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [范瑶 2016 硕士学位论文 (重庆: 重庆大学)]

    [6]

    Wang Y E, Zhou J H, Qin Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock 31 51 (in Chinese) [汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51]

    [7]

    Li Y P, Wang H R 2009 J. Xi'an Jiaotong Univ. 43 21 (in Chinese) [李彦鹏, 王焕然 2009 西安交通大学学报 43 21]

    [8]

    Huang J J, Wu J, Huang H 2018 Eur. Phys. J. E 41 17

    [9]

    Shen S Q, Bi F F, Guo Y L 2012 Int. J. Heat Mass Tran. 55 6938

    [10]

    Song Y C, Ning Z, Sun C H, L M, Yan K, Fu J 2013 T. CSICE 31 531 (in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 内燃机学报 31 531]

    [11]

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 CIESC J. 66 1667 (in Chinese) [郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 66 1667]

    [12]

    Ling J 2016 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [凌俊 2016 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Huang J J, Huang H B, Shu C, Chew Y T, Wang S L 2013 J. Phys. A: Math. Theor. 46 55501

    [14]

    Lee T 2009 Compu. Math. Appl. 58 987

    [15]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [16]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [17]

    Lee H G, Kim J 2011 Comput. Fluids 44 178

    [18]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708

    [19]

    Huang J J, Huang H B, Wang X Z 2015 Int. J. Numer. Meth. Fluids 77 123

    [20]

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese) [高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702]

    [21]

    Shen S Q, Yu H, Guo Y L, Liang G T 2013 J. Therm. Sci. Technol. 12 20 (in Chinese) [沈胜强, 于欢, 郭亚丽, 梁刚涛 2013 热科学与技术 12 20]

    [22]

    Yue P T, Zhou C F, Feng J J 2010 J. Fluid Mech. 645 279

    [23]

    Wen B H, Zhang C Y, Fang H P 2017 Sci. Sin.: Phys. Mech. Astron. 47 070012 (in Chinese) [闻炳海, 张超英, 方海平 2017 中国科学: 物理学 力学 天文学 47 070012]

    [24]

    Shao J Y, Shu C, Huang H B, Chew Y T 2014 Phys. Rev. E 89 033309

    [25]

    Prosperetti A 1981 Phys. Fluids 24 1217

    [26]

    Liu Y, Tan P, Xu L 2015 PNAS 112 3280

    [27]

    Yue P, Zhou C, Feng J J 2007 J. Comput. Phys. 223 1

  • [1] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [2] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟. 物理学报, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [3] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [4] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [5] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [6] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [7] 苏进, 欧阳洁, 王晓东. 耦合不可压流场输运方程的格子Boltzmann方法研究. 物理学报, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [8] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型. 物理学报, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [10] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [11] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [12] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [13] 黄乒花, 刘慕仁, 孔令江, 李华兵. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
    [14] 陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟. 物理学报, 2009, 58(1): 390-398. doi: 10.7498/aps.58.390
    [15] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [16] 蒋方明, 李隆键, 廖全, 曾建邦. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [17] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [18] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [19] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [20] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
  • 引用本文:
    Citation:
计量
  • 文章访问数:  302
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-28
  • 修回日期:  2018-05-07
  • 刊出日期:  2018-09-20

液滴撞击圆柱内表面的数值研究

  • 1. 重庆大学航空航天学院, 重庆 400044;
  • 2. 非均质材料力学重庆市重点实验室(重庆大学), 重庆 400044;
  • 3. 重庆大学, 机械传动国家重点实验室, 重庆 400044
  • 通信作者: 黄军杰, jjhuang@cqu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11202250)资助的课题.

摘要: 针对液滴撞击圆柱内表面的过程,利用基于相场的格子Boltzmann方法模拟液滴以不同初速度、从不同初始高度、撞击不同大小的圆柱内表面时液滴的形态变化,分析了液滴自身物性(如密度和黏性等)和圆柱内表面润湿性等因素对撞击现象的具体影响.研究发现:撞击韦伯数、密度比及动力黏性比、圆柱半径等对液滴撞击后沿圆柱内表面的铺展均有一定影响,较高的韦伯数下液滴可能会发生分裂;液滴初始高度对大密度比和动力黏性比的撞击影响较小;液滴反弹现象可能出现在接触角较大时;重力作用会抑制撞击后液滴的振荡.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回