搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1550 nm垂直腔面发射激光器的特征参量随温度的变化

马凌华 夏光琼 陈建军 吴正茂

1550 nm垂直腔面发射激光器的特征参量随温度的变化

马凌华, 夏光琼, 陈建军, 吴正茂
PDF
导出引用
  • 在采用自旋反转模型分析垂直腔面发射激光器(VCSELs)动力学行为的过程中,为了正确预测VCSELs的动力学行为,需要准确给出自旋反转模型中光场衰减速率k、总反转载流子衰减速率N、线性二向色性系数a、线性双折射系数p、自旋反转速率s和线宽增强因子这6个特征参量.本文对1550 nm VCSELs在自由运行和平行光注入下的输出特性进行实验分析,获取了这6个特征参量的值,并着重研究了当激光器温度在10.0030.00 ℃范围内变化时,这6个特征参量呈现的变化趋势.研究结果表明,随着温度的逐渐升高,p整体呈现逐渐增加的趋势,a,s,N和k呈现复杂的变化趋势,而则呈现逐渐减小的趋势.
      通信作者: 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475127,61575163,61775184,31760269,61875167)资助的课题.
    [1]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon Technol. Lett. 25 587

    [3]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)[颜森林 2015 物理学报 64 240505]

    [5]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [6]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [7]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [8]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [9]

    Lin Y Z, Xie Y Y, Ye Y C, Zhang J P, Wang S J, Liu Y, Pan G F, Zhang J L 2017 IEEE Photon. J. 9 7900512

    [10]

    Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894

    [11]

    Jiang N, Xue C P, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)[钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Lee M W, Hong Y H, Alan Shore K 2004 IEEE Photonic. Technol. Lett. 16 2392

    [14]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [15]

    Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235

    [16]

    Bacou A, Hayat A, Iakovlev V, Syrbu A, Rissons A, Mollier J C, Kapon E 2010 IEEE J. Quantum Electron. 46 313

    [17]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [18]

    Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601

    [19]

    Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B 31 2574

    [20]

    Yang J Y, Wu Z M, Liang Q, Chen J J, Zhong Z Q, Xia G Q 2016 Acta Phys. Sin. 65 124203 (in Chinese)[杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼 2016 物理学报 65 124203]

    [21]

    Chlouverakis K E, Adams M J 2004 IEEE J. Quantum Electron. 40 189

    [22]

    Khan N A, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Quantum Electron. 49 990

    [23]

    Quirce A, Valle A, Pesquera L, Thienpont H, Panajotov K 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800207

    [24]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [25]

    van Exter M P, Willemsen M B, Woerdman J P 1998 Phys. Rev. A 58 4191

    [26]

    van Exter M P, Willemsen M B, Woerdman J P 1999 Appl. Phys. Lett. 74 2274

    [27]

    Villafranca A, Lasobras J, Lzaro J A, Garcs I 2007 IEEE J. Quantum Electron. 43 116

    [28]

    Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408

    [29]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683

    [30]

    Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253

    [31]

    Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185

    [32]

    Summers H D, Dowd P, White I H, Tan M R 1995 Photon. Technol. Lett. 7 736

  • [1]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347

    [2]

    Wu J G, Wu Z M, Fan L, Tang X, Deng W, Xia G Q 2013 IEEE Photon Technol. Lett. 25 587

    [3]

    Sun Y Y, Li P, Guo Y Q, Guo X M, Liu X L, Zhang J G, Sang L X, Wang Y C 2017 Acta Phys. Sin. 66 030503 (in Chinese)[孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才 2017 物理学报 66 030503]

    [4]

    Yan S L 2015 Acta Phys. Sin. 64 240505 (in Chinese)[颜森林 2015 物理学报 64 240505]

    [5]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [6]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [7]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [8]

    Koyama F 2006 J. Lightwave Technol. 24 4502

    [9]

    Lin Y Z, Xie Y Y, Ye Y C, Zhang J P, Wang S J, Liu Y, Pan G F, Zhang J L 2017 IEEE Photon. J. 9 7900512

    [10]

    Kawaguchi H, Mori T, Sato Y, Yamayoshi Y 2006 Jpn. J. Appl. Phys. 45 L894

    [11]

    Jiang N, Xue C P, Liu D, Lv Y, Qiu K 2017 Opt. Lett. 42 1055

    [12]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 070504 (in Chinese)[钟东洲, 邓涛, 郑国梁 2014 物理学报 63 070504]

    [13]

    Lee M W, Hong Y H, Alan Shore K 2004 IEEE Photonic. Technol. Lett. 16 2392

    [14]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [15]

    Barland S, Spinicelli P, Giacomelli G, Marin F 2005 IEEE J. Quantum Electron. 41 1235

    [16]

    Bacou A, Hayat A, Iakovlev V, Syrbu A, Rissons A, Mollier J C, Kapon E 2010 IEEE J. Quantum Electron. 46 313

    [17]

    Al-Seyab R, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [18]

    Prez P, Valle A, Noriega I, Pesquera L 2014 J. Lightwave Technol. 32 1601

    [19]

    Prez P, Valle A, Pesquera L 2014 J. Opt. Soc. Am. B 31 2574

    [20]

    Yang J Y, Wu Z M, Liang Q, Chen J J, Zhong Z Q, Xia G Q 2016 Acta Phys. Sin. 65 124203 (in Chinese)[杨继云, 吴正茂, 梁卿, 陈建军, 钟祝强, 夏光琼 2016 物理学报 65 124203]

    [21]

    Chlouverakis K E, Adams M J 2004 IEEE J. Quantum Electron. 40 189

    [22]

    Khan N A, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Quantum Electron. 49 990

    [23]

    Quirce A, Valle A, Pesquera L, Thienpont H, Panajotov K 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800207

    [24]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [25]

    van Exter M P, Willemsen M B, Woerdman J P 1998 Phys. Rev. A 58 4191

    [26]

    van Exter M P, Willemsen M B, Woerdman J P 1999 Appl. Phys. Lett. 74 2274

    [27]

    Villafranca A, Lasobras J, Lzaro J A, Garcs I 2007 IEEE J. Quantum Electron. 43 116

    [28]

    Tatham M C, Lealman I F, Seltzer C P, Westbrook L D, Cooper D M 1992 IEEE J. Quantum Electron. 28 408

    [29]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77: the Art of Scientific Computing (2nd Ed.) (Cambridge: Cambridge University Press) pp678-683

    [30]

    Gavrielides A, Kovanis V, Erneux T 1997 Opt. Commun. 136 253

    [31]

    Chlouverakis K E, Al-Aswad K M, Henning I D, Adams M J 2003 Electron. Lett. 39 1185

    [32]

    Summers H D, Dowd P, White I H, Tan M R 1995 Photon. Technol. Lett. 7 736

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1553
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-07-14
  • 刊出日期:  2018-11-05

1550 nm垂直腔面发射激光器的特征参量随温度的变化

  • 1. 西南大学物理科学与技术学院, 重庆 400715;
  • 2. 新疆医科大学医学工程技术学院, 乌鲁木齐 830011
  • 通信作者: 吴正茂, zmwu@swu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61475127,61575163,61775184,31760269,61875167)资助的课题.

摘要: 在采用自旋反转模型分析垂直腔面发射激光器(VCSELs)动力学行为的过程中,为了正确预测VCSELs的动力学行为,需要准确给出自旋反转模型中光场衰减速率k、总反转载流子衰减速率N、线性二向色性系数a、线性双折射系数p、自旋反转速率s和线宽增强因子这6个特征参量.本文对1550 nm VCSELs在自由运行和平行光注入下的输出特性进行实验分析,获取了这6个特征参量的值,并着重研究了当激光器温度在10.0030.00 ℃范围内变化时,这6个特征参量呈现的变化趋势.研究结果表明,随着温度的逐渐升高,p整体呈现逐渐增加的趋势,a,s,N和k呈现复杂的变化趋势,而则呈现逐渐减小的趋势.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回