搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小水滴撞击深水液池空腔运动的数值模拟及机理研究

裴传康 魏炳乾

微小水滴撞击深水液池空腔运动的数值模拟及机理研究

裴传康, 魏炳乾
PDF
导出引用
  • 为了探究微米级微小水滴撞击深水液池运动中空腔的成长过程与机理,采用自适应网格技术和流体体积方法对撞击速度为2.5–6.5 m/s的微小水滴撞击深水液池的运动进行数值模拟研究,考察不同撞击速度下水滴撞击深水液池后的水体混掺、毛细波传播、空腔变形规律以及气泡截留过程,并深入探究空腔运动的动力学机制.研究结果表明,不同撞击速度下,在忽略毛细波作用、空腔深度h∈(D,hmax)的前提下,空腔深度随时间的成长仍满足t∝h5/2的关系;液滴撞击产生的空腔形状有U形和半球形两种,前者一般向V形转变,后者空腔底部会变为圆柱形,产生细长射流,并有可能发生气泡截留现象;在撞击速度较低时,低压区首先在空腔侧壁与底部交界处产生,随后在靠近液面以及空腔底部靠近中心区域各产生一个较大的涡环;在撞击速度较高,产生细长射流时,涡环的生成被抑制,低压区首先在波浪底部与侧壁上交界处产生,随后空腔底部变为圆柱状,空腔侧壁首先坍塌形成气泡截留.
      通信作者: 魏炳乾, weibingqian@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51479163)和陕西水利科技计划(批准号:2014skj-14)资助的课题.
    [1]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159

    [2]

    Jomaa S, Barry D A, Brovelli A, Sander G C, Parlange J Y, Heng B C P, Tromp-van Meerveld H J 2010 J. Hydrol. 395 117

    [3]

    Ferreira A G, Larock B E, Singer M J 1985 Soil Sci. Soc. Am. J. 49 1502

    [4]

    Takagaki N, Kurose R, Baba Y, Nakajima Y, Komori S 2014 Int. J. Multiph. Flow 65 1

    [5]

    Worthington A M 1908 A Study of Splashes (London: Longmans, Green) pp129-132

    [6]

    Chapman D S, Critchlow P R 1967 J. Fluid Mech. 29 177

    [7]

    Dooley B S, Warncke A E, Gharib M, Tryggvason G 1997 Exp. Fluids 22 369

    [8]

    Liow J 2001 J. Fluid Mech. 427 73

    [9]

    Michon G J, Josserand C, Séon T 2017 Phys. Rev. Fluids 2 023601

    [10]

    Zhbankova S L, Kolpakov A V 1990 Fluid Dyn. 25 470

    [11]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [12]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [13]

    Sussman M, Puckett E G 2000 J. Comput. Phys. 162 301

    [14]

    Yue P, Zhou C, Feng J J 2006 Phys. Fluids 18 102102

    [15]

    Ray B, Biswas G, Sharma A 2010 J. Fluid Mech. 655 72

    [16]

    Castillo-Orozco E, Davanlou A, Choudhury P K, Kumar R 2015 Phys. Rev. E 92 053022

    [17]

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704 (in Chinese) [戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704]

    [18]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese) [黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702]

    [19]

    Zhao H, Brunsvold A, Munkejord S T 2011 Exp. Fluids 50 621

    [20]

    Popinet S 2003 J. Comput. Phys. 190 572

    [21]

    Popinet S 2009 J. Comput. Phys. 228 5838

    [22]

    Agbaglah G, Delaux S, Fuster D, Hoepffner J, Josserand C, Popinet S, Ray P, Scardovelli R, Zaleski S 2011 C. R. Mec. 339 194

    [23]

    Morton D, Rudman M, Jong-Leng L 2000 Phys. Fluids 12 747

    [24]

    Ray B, Biswas G, Sharma A 2015 J. Fluid Mech. 768 492

    [25]

    Berberović E, van Hinsberg N P, Jakirli S, Roisman I V, Tropea C 2009 Phys. Rev. E 79 036306

  • [1]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159

    [2]

    Jomaa S, Barry D A, Brovelli A, Sander G C, Parlange J Y, Heng B C P, Tromp-van Meerveld H J 2010 J. Hydrol. 395 117

    [3]

    Ferreira A G, Larock B E, Singer M J 1985 Soil Sci. Soc. Am. J. 49 1502

    [4]

    Takagaki N, Kurose R, Baba Y, Nakajima Y, Komori S 2014 Int. J. Multiph. Flow 65 1

    [5]

    Worthington A M 1908 A Study of Splashes (London: Longmans, Green) pp129-132

    [6]

    Chapman D S, Critchlow P R 1967 J. Fluid Mech. 29 177

    [7]

    Dooley B S, Warncke A E, Gharib M, Tryggvason G 1997 Exp. Fluids 22 369

    [8]

    Liow J 2001 J. Fluid Mech. 427 73

    [9]

    Michon G J, Josserand C, Séon T 2017 Phys. Rev. Fluids 2 023601

    [10]

    Zhbankova S L, Kolpakov A V 1990 Fluid Dyn. 25 470

    [11]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [12]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [13]

    Sussman M, Puckett E G 2000 J. Comput. Phys. 162 301

    [14]

    Yue P, Zhou C, Feng J J 2006 Phys. Fluids 18 102102

    [15]

    Ray B, Biswas G, Sharma A 2010 J. Fluid Mech. 655 72

    [16]

    Castillo-Orozco E, Davanlou A, Choudhury P K, Kumar R 2015 Phys. Rev. E 92 053022

    [17]

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704 (in Chinese) [戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704]

    [18]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese) [黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702]

    [19]

    Zhao H, Brunsvold A, Munkejord S T 2011 Exp. Fluids 50 621

    [20]

    Popinet S 2003 J. Comput. Phys. 190 572

    [21]

    Popinet S 2009 J. Comput. Phys. 228 5838

    [22]

    Agbaglah G, Delaux S, Fuster D, Hoepffner J, Josserand C, Popinet S, Ray P, Scardovelli R, Zaleski S 2011 C. R. Mec. 339 194

    [23]

    Morton D, Rudman M, Jong-Leng L 2000 Phys. Fluids 12 747

    [24]

    Ray B, Biswas G, Sharma A 2015 J. Fluid Mech. 768 492

    [25]

    Berberović E, van Hinsberg N P, Jakirli S, Roisman I V, Tropea C 2009 Phys. Rev. E 79 036306

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1473
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-28
  • 修回日期:  2018-09-20
  • 刊出日期:  2019-11-20

微小水滴撞击深水液池空腔运动的数值模拟及机理研究

  • 1. 西安理工大学, 省部共建西北旱区生态水利国家重点实验室, 西安 710048
  • 通信作者: 魏炳乾, weibingqian@xaut.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51479163)和陕西水利科技计划(批准号:2014skj-14)资助的课题.

摘要: 为了探究微米级微小水滴撞击深水液池运动中空腔的成长过程与机理,采用自适应网格技术和流体体积方法对撞击速度为2.5–6.5 m/s的微小水滴撞击深水液池的运动进行数值模拟研究,考察不同撞击速度下水滴撞击深水液池后的水体混掺、毛细波传播、空腔变形规律以及气泡截留过程,并深入探究空腔运动的动力学机制.研究结果表明,不同撞击速度下,在忽略毛细波作用、空腔深度h∈(D,hmax)的前提下,空腔深度随时间的成长仍满足t∝h5/2的关系;液滴撞击产生的空腔形状有U形和半球形两种,前者一般向V形转变,后者空腔底部会变为圆柱形,产生细长射流,并有可能发生气泡截留现象;在撞击速度较低时,低压区首先在空腔侧壁与底部交界处产生,随后在靠近液面以及空腔底部靠近中心区域各产生一个较大的涡环;在撞击速度较高,产生细长射流时,涡环的生成被抑制,低压区首先在波浪底部与侧壁上交界处产生,随后空腔底部变为圆柱状,空腔侧壁首先坍塌形成气泡截留.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回