搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于简化电化学模型的锂电池互联状态观测器

庞辉 张旭

一种基于简化电化学模型的锂电池互联状态观测器

庞辉, 张旭
PDF
导出引用
  • 锂电池正、负极固相浓度分布以及荷电状态的精确估计对于开发锂电池工作状态的实时监控算法,进而构建高效、可靠的锂电池管理系统具有重要意义.本文基于多孔电极理论和浓度理论,提出基于扩展单粒子模型的锂电池关键内部参数识别的优化模型和方法;在该电化学模型简化的基础上,提出一种基于H∞鲁棒控制理论框架的锂电池新型双向互联观测器,可同时实现对锂电池正、负电极浓度及荷电状态的估计,并通过对比分析不同工况下的仿真结果和实验数据,对所提出的互联观测器性能进行了系统验证.结果表明:所设计的互联观测器能够准确预测锂电池的输出电压和荷电状态,有效提高了锂电池系统模型的动态性能和鲁棒稳定性,为锂电池管理系统的开发奠定了理论基础.
      通信作者: 庞辉, huipang@163.com
    • 基金项目: 国家自然科学基金(批准号:51675423)资助的课题.
    [1]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建元 2015 物理学报 64 108202]

    [2]

    Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [3]

    Boovaragavan V, Harinipriya S, Subramanian V 2008 J. Power Sources 183 361

    [4]

    Feng T, Yang L, Zhao X, Zhang H, Qiang J 2015 J. Power Sources 281 192

    [5]

    Zhang X, Lu J, Yuan S, Yang J, Zhou X 2017 J. Power Sources 345 21

    [6]

    Chaoui H, Mejdoubi A E, Gualous H 2017 IEEE Trans. Veh. Technol. 66 2000

    [7]

    Di D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst-T. ASME 132 061302

    [8]

    Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang X G, Miller T 2016 IEEE Trans. Contr. Syst. Technol. 24 384

    [9]

    Tanim T R, Rahn C D, Wang C Y 2015 Energy 80 731

    [10]

    Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Contr. Syst. Technol. 21 289

    [11]

    Dey S, Ayalew B, Pisu P 2014 Int. Workshop Variable Struct. Syst. Nantes, France, June 29-July 2, 2014 p1

    [12]

    Allam A, Onori S 2018 IEEE Trans. Ind. Electron. 65 7311

    [13]

    Dey S, Ayalew B, Pisu P 2015 IEEE Trans. Contr. Syst. Technol. 23 1935

    [14]

    Moura S J, Chaturvedi N A, Krstic M 2014 J. Dyn. Syst-T. ASME 136 011015

    [15]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [16]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [17]

    Zhang L, Wang L, Hinds G, Chao L, Zheng J, Li J 2014 J. Power Sources 270 367

    [18]

    Li J, Zou L, Tian F, Dong X, Zou Z, Yang H 2016 J. Electrochem. Soc. 163 A1646

    [19]

    Wang Y, Fang H, Sahinoglu Z, Wada T, Hara S 2015 IEEE Trans. Contr. Syst. Technol. 23 948

    [20]

    Pang H 2018 Acta Phys. Sin. 67 058201 (in Chinese) [庞辉 2018 物理学报 67 058201]

    [21]

    Diwakar V D 2009 Ph. D. Dissertation (St. Louis: Washington University)

    [22]

    Marcicki J, Canova M, Conlisk A T, Rizzoni G 2013 J. Power Sources 237 310

    [23]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [24]

    Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666

    [25]

    Smith K, Wang C Y 2006 J. Power Sources 161 628

    [26]

    Speltino C, Domenico D D, Fiengo G, Stefanopoulou A 2009 European Control Conference (ECC) Budapest, Hungary, August 23-26, 2009 p1053

    [27]

    Zhang L Q, Wang L X, Hinds G, Lyu C, Zheng J, Li J F 2014 J. Power Sources 270 367

    [28]

    Valoen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [29]

    Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S 2014 IEEE J. Em. Sel. Top. 2 659

    [30]

    Marcicki J, Todeschini F, Onori S, Canova M 2012 American Control Conference (ACC 2012) Montreal, Canada, June 27-29, 2012 p572

    [31]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [32]

    Vanantwerp J G, Braatz R D 2000 J. Process Contr. 10 363

  • [1]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建元 2015 物理学报 64 108202]

    [2]

    Cheng J, Li Z, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [3]

    Boovaragavan V, Harinipriya S, Subramanian V 2008 J. Power Sources 183 361

    [4]

    Feng T, Yang L, Zhao X, Zhang H, Qiang J 2015 J. Power Sources 281 192

    [5]

    Zhang X, Lu J, Yuan S, Yang J, Zhou X 2017 J. Power Sources 345 21

    [6]

    Chaoui H, Mejdoubi A E, Gualous H 2017 IEEE Trans. Veh. Technol. 66 2000

    [7]

    Di D, Stefanopoulou A, Fiengo G 2010 J. Dyn. Syst-T. ASME 132 061302

    [8]

    Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang X G, Miller T 2016 IEEE Trans. Contr. Syst. Technol. 24 384

    [9]

    Tanim T R, Rahn C D, Wang C Y 2015 Energy 80 731

    [10]

    Klein R, Chaturvedi N A, Christensen J, Ahmed J, Findeisen R, Kojic A 2013 IEEE Trans. Contr. Syst. Technol. 21 289

    [11]

    Dey S, Ayalew B, Pisu P 2014 Int. Workshop Variable Struct. Syst. Nantes, France, June 29-July 2, 2014 p1

    [12]

    Allam A, Onori S 2018 IEEE Trans. Ind. Electron. 65 7311

    [13]

    Dey S, Ayalew B, Pisu P 2015 IEEE Trans. Contr. Syst. Technol. 23 1935

    [14]

    Moura S J, Chaturvedi N A, Krstic M 2014 J. Dyn. Syst-T. ASME 136 011015

    [15]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [16]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [17]

    Zhang L, Wang L, Hinds G, Chao L, Zheng J, Li J 2014 J. Power Sources 270 367

    [18]

    Li J, Zou L, Tian F, Dong X, Zou Z, Yang H 2016 J. Electrochem. Soc. 163 A1646

    [19]

    Wang Y, Fang H, Sahinoglu Z, Wada T, Hara S 2015 IEEE Trans. Contr. Syst. Technol. 23 948

    [20]

    Pang H 2018 Acta Phys. Sin. 67 058201 (in Chinese) [庞辉 2018 物理学报 67 058201]

    [21]

    Diwakar V D 2009 Ph. D. Dissertation (St. Louis: Washington University)

    [22]

    Marcicki J, Canova M, Conlisk A T, Rizzoni G 2013 J. Power Sources 237 310

    [23]

    Moura S J, Argomedo F B, Klein R, Mirtabatabaei A, Krstic M 2017 IEEE Trans. Contr. Syst. Technol. 25 453

    [24]

    Fan G, Pan K, Canova M, Marcicki J, Yang X G 2016 J. Electrochem. Soc. 163 A666

    [25]

    Smith K, Wang C Y 2006 J. Power Sources 161 628

    [26]

    Speltino C, Domenico D D, Fiengo G, Stefanopoulou A 2009 European Control Conference (ECC) Budapest, Hungary, August 23-26, 2009 p1053

    [27]

    Zhang L Q, Wang L X, Hinds G, Lyu C, Zheng J, Li J F 2014 J. Power Sources 270 367

    [28]

    Valoen L O, Reimers J N 2005 J. Electrochem. Soc. 152 A882

    [29]

    Ahmed R, El Sayed M, Arasaratnam I, Tjong J, Habibi S 2014 IEEE J. Em. Sel. Top. 2 659

    [30]

    Marcicki J, Todeschini F, Onori S, Canova M 2012 American Control Conference (ACC 2012) Montreal, Canada, June 27-29, 2012 p572

    [31]

    Forman J C, Moura S J, Stein J L, Fathy H K 2012 J. Power Sources 210 263

    [32]

    Vanantwerp J G, Braatz R D 2000 J. Process Contr. 10 363

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1772
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-26
  • 修回日期:  2018-08-26
  • 刊出日期:  2019-11-20

一种基于简化电化学模型的锂电池互联状态观测器

  • 1. 西安理工大学机械与精密仪器工程学院, 西安 710048
  • 通信作者: 庞辉, huipang@163.com
    基金项目: 

    国家自然科学基金(批准号:51675423)资助的课题.

摘要: 锂电池正、负极固相浓度分布以及荷电状态的精确估计对于开发锂电池工作状态的实时监控算法,进而构建高效、可靠的锂电池管理系统具有重要意义.本文基于多孔电极理论和浓度理论,提出基于扩展单粒子模型的锂电池关键内部参数识别的优化模型和方法;在该电化学模型简化的基础上,提出一种基于H∞鲁棒控制理论框架的锂电池新型双向互联观测器,可同时实现对锂电池正、负电极浓度及荷电状态的估计,并通过对比分析不同工况下的仿真结果和实验数据,对所提出的互联观测器性能进行了系统验证.结果表明:所设计的互联观测器能够准确预测锂电池的输出电压和荷电状态,有效提高了锂电池系统模型的动态性能和鲁棒稳定性,为锂电池管理系统的开发奠定了理论基础.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回