搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海海底山环境下声传播水平折射效应研究

李晟昊 李整林 李文 秦继兴

深海海底山环境下声传播水平折射效应研究

李晟昊, 李整林, 李文, 秦继兴
PDF
导出引用
  • 声波在深海海底山环境中传播时,海底山会对声传播产生重要影响.2016年在南海深海进行了一次海底山环境下的声传播实验,观测到了由海底山引起的三维声传播效应,本文利用BELLHOP射线理论解释了海底山环境下的三维声传播机理.结果表明:声波在传播过程中与海底山作用后破坏了深海会聚区结构,导致传播损失增大,在海底山后形成具有明显边界的声水平折射区,利用二维声传播模型无法解释实验现象,海底山后声水平折射区实验测量的声场结构与N×2D模型计算结果存在明显差异,实验的传播损失比N×2D模型计算结果大10 dB.通过三维射线模型分析N×2D模型计算结果与实验结果存在明显差异产生的原因,发现由于声波水平折射作用,部分声线无法到达接收器,使得三维声传播效应对海底山后一定角度范围内声场影响较为明显.因此,深海海底山会引起明显的三维水平折射效应,应在水下目标探测和定位等应用中给予重视.
      通信作者: 李整林, lzhl@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11434012,41561144006,11874061)资助的课题.
    [1]

    Weston D E 1961 Proc. Phys. Soc. London 78 46

    [2]

    Harrison C H 1979 J. Acoust. Soc. Am. 65 56

    [3]

    Harrison C H 1977 J. Acoust. Soc. Am. 62 1382

    [4]

    Buckingham M J 1986 J. Acoust. Soc. Am. 80 265

    [5]

    Munk W H, Zachariasen F 1991 J. Atmos. Oceanic Technol. 8 554

    [6]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [7]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [8]

    Reilly S M, Potty G R, Goodrich M 2016 J. Comput. Acoust. 24 165007

    [9]

    Herman M, Emily C, Edgar A J, Robert A S 1984 J. Acoust. Soc. Am. 75 1478

    [10]

    Megan S B, Benjamin M G, Marcia J I 2015 J. Comput. Acoust. 23 267

    [11]

    Doolittle R D, Tolstoy A, Buckingham M J 1988 J. Acoust. Soc. Am. 83 2117

    [12]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle–A Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle USA, September 20-23, 2010 p1

    [13]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [14]

    Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese) [秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]

    [15]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [16]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [17]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [18]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p3

    [20]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [21]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1]

    Weston D E 1961 Proc. Phys. Soc. London 78 46

    [2]

    Harrison C H 1979 J. Acoust. Soc. Am. 65 56

    [3]

    Harrison C H 1977 J. Acoust. Soc. Am. 62 1382

    [4]

    Buckingham M J 1986 J. Acoust. Soc. Am. 80 265

    [5]

    Munk W H, Zachariasen F 1991 J. Atmos. Oceanic Technol. 8 554

    [6]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [7]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [8]

    Reilly S M, Potty G R, Goodrich M 2016 J. Comput. Acoust. 24 165007

    [9]

    Herman M, Emily C, Edgar A J, Robert A S 1984 J. Acoust. Soc. Am. 75 1478

    [10]

    Megan S B, Benjamin M G, Marcia J I 2015 J. Comput. Acoust. 23 267

    [11]

    Doolittle R D, Tolstoy A, Buckingham M J 1988 J. Acoust. Soc. Am. 83 2117

    [12]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle–A Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle USA, September 20-23, 2010 p1

    [13]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [14]

    Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese) [秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]

    [15]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [16]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [17]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [18]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p3

    [20]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [21]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2190
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-03
  • 修回日期:  2018-09-20
  • 刊出日期:  2019-11-20

深海海底山环境下声传播水平折射效应研究

  • 1. 中国科学院声学研究所, 声场声信息国家重点实验室, 北京 100190;
  • 2. 中国科学院大学, 北京 100190
  • 通信作者: 李整林, lzhl@mail.ioa.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11434012,41561144006,11874061)资助的课题.

摘要: 声波在深海海底山环境中传播时,海底山会对声传播产生重要影响.2016年在南海深海进行了一次海底山环境下的声传播实验,观测到了由海底山引起的三维声传播效应,本文利用BELLHOP射线理论解释了海底山环境下的三维声传播机理.结果表明:声波在传播过程中与海底山作用后破坏了深海会聚区结构,导致传播损失增大,在海底山后形成具有明显边界的声水平折射区,利用二维声传播模型无法解释实验现象,海底山后声水平折射区实验测量的声场结构与N×2D模型计算结果存在明显差异,实验的传播损失比N×2D模型计算结果大10 dB.通过三维射线模型分析N×2D模型计算结果与实验结果存在明显差异产生的原因,发现由于声波水平折射作用,部分声线无法到达接收器,使得三维声传播效应对海底山后一定角度范围内声场影响较为明显.因此,深海海底山会引起明显的三维水平折射效应,应在水下目标探测和定位等应用中给予重视.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回