搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体横向射流在气膜作用下的破碎过程

张彬 成鹏 李清廉 陈慧源 李晨阳

引用本文:
Citation:

液体横向射流在气膜作用下的破碎过程

张彬, 成鹏, 李清廉, 陈慧源, 李晨阳

Breakup process of liquid jet in gas film

Zhang Bin, Cheng Peng, Li Qing-Lian, Chen Hui-Yuan, Li Chen-Yang
PDF
HTML
导出引用
  • 为了研究液体横向射流在气膜作用下的破碎过程, 采用背景光成像技术及VOF TO DPM方法进行了实验研究和仿真研究, 模拟介质为水和空气. 研究结果表明, 液体射流在气膜作用下主要存在两种破碎过程: 柱状破碎和表面破碎. Rayleigh-Taylor (R-T)不稳定性产生的表面波是液体射流发生柱状破碎的主要原因, 气流穿透表面波的波谷导致射流柱破碎, 破碎后的液丝沿流向逐渐发展呈带状分布. Kelvin-Helmholtz (K-H)不稳定性产生的表面波是液体射流发生表面破碎的主要原因, 液丝和液滴从射流表面剥离. 局部动量比对液体横向射流的破碎过程具有重要影响, 当局部动量比较低时, 液体射流的破碎由K-H不稳定性主导; 随着局部动量比的增大液体射流的破碎逐渐由R-T不稳定性主导. 液体射流的破碎长度及穿透深度均随局部动量比的增大而增大.
    In order to study the breakup process of liquid jet in gas film, the backlit photography technique and the VOF TO DPM method are used for experimental and simulation research respectively. Water and air are used as simulant media. Grid adaptive technology is used to refine the gas-liquid interface grid and improve the capture accuracy of the gas-liquid interface. The results show that there are two main breakup processes of liquid jet in gas film: column breakup and surface breakup. The local high-pressure zone in front of the liquid jet makes the jet have a large normal velocity gradient, which causes R-T instability. The surface wave that is generated by the R-T instability is mainly responsible for the liquid column breakup. When the thin liquid film reaches a column breakup point, the airflow penetrating the trough of the surface wave causes the jet column to break. The tangential velocity gradient is generated when the gas film bypasses the liquid jet surface, which causes K-H instability. The K-H surface waves cause ligaments and droplets to strip from the surface of the liquid jet. The local momentum ratio has an important influence on the breakup process of the liquid jet in gas film. When the local momentum ratio is low, the breakup of liquid jet is dominated by the K-H instability. As the local momentum ratio increases, the breakup of liquid jet is gradually dominated by R-T instability. The local momentum ratio plays an important role in the distribution range of the liquid jet in gas film. When the local momentum ratio is low, the ligaments and droplets caused by the liquid jet are mainly distributed within the range of gas film. As the local momentum ratio increases, part of the ligaments and droplets escape from the range of the gas film. The liquid jet penetrates the gas film when the local momentum ratio is greater than 0.74. The breakup length and the penetration depth are both affected by the local momentum ratio. The breakup length increases with the local momentum ratio increasing. The penetration depth also increases with the local momentum ratio, and the penetration depth increases significantly when the liquid jet penetrates the gas film.
      通信作者: 成鹏, imchengpeng@yeah.net ; 李清廉, peakdreamer@163.com
    • 基金项目: 国家自然科学基金(批准号: 11472303, 11402298)、国家自然科学基金青年科学基金(批准号: 11902351)和国家重点基础研究发展计划(批准号: 613239)资助的课题
      Corresponding author: Cheng Peng, imchengpeng@yeah.net ; Li Qing-Lian, peakdreamer@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472303, 11402298), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11902351), and the National Basic Research Program of China (Grant No. 613239)
    [1]

    岳春国, 李进贤, 侯晓, 冯喜平, 杨姝君 2009 中国科学: 技术科学 39 464Google Scholar

    Yue C G, Li J X, Hou X, Feng X P, Yang S J 2009 Sci. Sin.: Tech. 39 464Google Scholar

    [2]

    张雪松 2017 卫星与网络 6 40Google Scholar

    Zhang X S 2017 Satell. Network 6 40Google Scholar

    [3]

    Heister S D 2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science Business Media) pp647−655

    [4]

    Son M, Radhakrishnan K, Yoon Y, Koo J 2017 Acta Astronaut. 135 139Google Scholar

    [5]

    Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 p2000

    [6]

    Ninish S, Vaidyanathan A, Nandakumar K 2018 Exp. Therm. Fluid Sci. 97 324Google Scholar

    [7]

    方昕昕, 沈赤兵, 张新桥 2016 航空动力学报 31 3004Google Scholar

    Fang X X, Shen C B, Zhang X Q 2016 J. Aerosp. Power 31 3004Google Scholar

    [8]

    方昕昕, 沈赤兵 2017 航空动力学报 32 2291Google Scholar

    Fang X X, Shen C B 2017 J. Aerosp. Power 32 2291Google Scholar

    [9]

    Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar

    [10]

    刘昌波 2014 博士学位论文(西安: 西安航天动力研究所)

    Liu C B 2014 Ph. D. Dissertation (Xi’an: Xi’an Aerospace Propulsion Institute) (in Chinese)

    [11]

    Yates C L 1971 Proceedings of the 7 th Propulsion Joint Specialist Conference Salt Lake City, June 14–18, 1971 p724

    [12]

    Kush E A, Schetz J A 1973 AIAA J. 11 1223Google Scholar

    [13]

    Schetz J A, Kush E A, Joshi P B 1980 AIAA J. 18 774Google Scholar

    [14]

    陈亮, 乐嘉陵, 宋文艳, 杨顺华, 曹娜 2011 实验流体力学 25 29Google Scholar

    Cheng L, Le J L, Song W Y, Yang S H, Cao N 2011 J. Exp. Fluid Mech. 25 29Google Scholar

    [15]

    曹娜, 徐青, 曹亮, 雷岚, 韩长材, 马继明, 杜继业 2013 现代应用物理 4 323Google Scholar

    Cao N, Xu Q, Cao L, Lei L, Han C C, Ma J M, Du J Y 2013 Mod. Appl. Phys. 4 323Google Scholar

    [16]

    Yang S H, Le J L 2006 Proceedings of the 12th Chinese National Symposium on ShockWaves Luoyang, July 24, 2006 p70

    [17]

    徐胜利, Archer R D, Milton B E, 岳朋涛 2000 中国科学:技术科学 30 179Google Scholar

    Xu S L, Archer R D, Milton B E, Yue P T 2000 Sci. Sin.: Tech. 30 179Google Scholar

    [18]

    刘楠 2019 博士学位论文 (长沙: 国防科技大学)

    Liu N 2019 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [19]

    Xiao F, Wang Z G, Sun M B, Liang J H, Liu N 2016 Int. J. Multiph. Flow 87 229Google Scholar

    [20]

    Xiao F, Sun M B 2019 Atom. Sprays 28 975Google Scholar

    [21]

    李春, 沈赤兵, 李清廉, 朱元昊 2019 国防科技大学学报 41 73Google Scholar

    Li C, Shen C B, Li Q L, Zhu Y H 2019 J. Natl. Univ. Def. Technol. 41 73Google Scholar

    [22]

    Cheng P, Li Q L, Chen H Y 2019 Acta Astronaut. 154 61Google Scholar

    [23]

    Chen H Y, Li Q L, Cheng P 2019 Acta Astronaut. 162 424Google Scholar

    [24]

    吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar

    Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar

    [25]

    Wu L Y, Wang Z G, Li Q L, Li C 2016 J. Vis. 19 337Google Scholar

    [26]

    Lin K C, Kirkendall K A, Kennedy P J, Jackson T A 1999 Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Los Angeles, California, June 20–24, 1999 p2374

    [27]

    Sallam K A, Aalburg C, Faeth G M, Lin K C, Carter C D, Jackson T A 2004 Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5–8, 2004 p970

    [28]

    Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar

    [29]

    Richards J R, Lenhoff A M, Beris A N 1994 Phys. Fluids 6 2640Google Scholar

    [30]

    Srinivasan V, Salazar A J, Saito K 2011 Appl. Math. Model. 35 3710Google Scholar

    [31]

    Herrmann M 2011 Proc. Combust. Inst. 33 2079Google Scholar

    [32]

    Desjardins O, Pitsch H 2009 J. Comput. Phys. 228 1658Google Scholar

    [33]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [34]

    Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 Proc. Combust. Inst. 36 2417Google Scholar

    [35]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [36]

    Li X Y, Soteriou M C, Arienti M, Sussman M M 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 p99

    [37]

    Fontes D H, Vilela V, Souza Meira L D, Souza F J 2019 Int. J. Multiph. Flow 114 98Google Scholar

    [38]

    Chu W, Li X Q, Tong Y H, Reng Y J 2020 Acta Astronaut. 175 204Google Scholar

    [39]

    Liu N, Wang Z G, Sun M B, Deiterding R, Wang H B 2019 Aerosp. Sci. Technol. 91 456Google Scholar

    [40]

    Li P B, Wang Z G, Sun M B, Wang H B 2017 Acta Astronaut. 134 333Google Scholar

    [41]

    李佩波, 王振国, 孙明波, 汪洪波 2016 宇航学报 37 209Google Scholar

    Li P B, Wang Z G, Sun M B, Wang H B 2016 J. Astronaut. 37 209Google Scholar

    [42]

    成鹏 2018 博士学位论文 (长沙: 国防科技大学)

    Cheng P 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [43]

    Wu P K, Kirkendall K A, Fuller R P, Nejad A S 1997 J. Propul. Power 13 64Google Scholar

  • 图 1  (a) 针栓喷注器; (b)针栓喷注单元

    Fig. 1.  (a) Pintle injector; (b) pintle injector element.

    图 2  实验系统示意图

    Fig. 2.  Schematic diagram of the experimental setup.

    图 3  计算域

    Fig. 3.  Computational domain.

    图 4  自适应加密后的网格

    Fig. 4.  Mesh after adaptive.

    图 5  (a) 仿真结果; (b) 实验结果; (c) 破碎图像对比; (d)不稳定波长对比

    Fig. 5.  (a) Simulation; (b) experiment; (c)comparison of breakup process; (d) comparison of unstable wavelength.

    图 6  (a) 压力云图; (b) 速度云图

    Fig. 6.  (a) Contour of pressure; (b) contour of velocity.

    图 7  R-T不稳定波的发展过程 (a) t0; (b) t0 + 0.12 ms; (c) t0 + 0.24 ms; (d) t0 + 0.36 ms

    Fig. 7.  The development of unsteady wave: (a) t0; (b) t0 + 0.12 ms; (c) t0 + 0.24 ms; (d) t0 + 0.36 ms.

    图 8  (a)射流近壁面的流线图; (b) 射流近壁面的速度矢量图

    Fig. 8.  (a) Streamline diagram of jet near the wall; (b) velocity vector diagram of jet near the wall.

    图 9  气流穿透射流表面波波谷 (a)仿真; (b)实验

    Fig. 9.  The gas penetrate the trough of surface wave: (a) Simulation; (b) experiment.

    图 10  射流迎风面的液滴剥离

    Fig. 10.  Droplet striped from the windward surface of the jet.

    图 11  射流横截面变形过程

    Fig. 11.  Deformation process of jet cross section

    图 12  射流横截面(Y = 1.0D)的速度矢量图

    Fig. 12.  Velocity vector diagram of jet cross section (Y = 1.0D)

    图 13  流场流线图

    Fig. 13.  Streamline of flow field.

    图 14  液体射流破碎过程示意图

    Fig. 14.  Schematic diagram of liquid jet breaking process.

    图 15  不同LMR下的射流破碎过程 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52

    Fig. 15.  Breakup process of liquid jet under different LMR: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52.

    图 16  不稳定波波长随LMR变化

    Fig. 16.  Unsteady wavelength vs. LMR.

    图 17  射流近壁面的压力云图 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74

    Fig. 17.  Pressure contour of jet near the wall: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74.

    图 18  气膜迹线图 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52

    Fig. 18.  Streamline of gas film: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52

    图 19  (a) 破碎长度随时间变化(LMR = 1.23); (b) 破碎长度随LMR变化

    Fig. 19.  (a) Breakup length with flow time (LMR = 1.23); (b) breakup length with different LMR

    图 20  (a) 穿透深度随LMR变化; (b) 展向扩张角随LMR变化

    Fig. 20.  (a) Penetration depth vs. LMR; (b) spray spread angle vs. LMR.

    表 1  气膜工况参数

    Table 1.  Parameters of gas film.

    总压/
    MPa
    静压/
    MPa
    质量流量/
    (kg·s–1)
    速度/
    (m·s–1)

    度/K
    膜厚/
    mm
    0.20.10.02315.43003
    下载: 导出CSV

    表 2  液体射流工况参数

    Table 2.  Parameters of liquid jets.

    密度/
    (kg·m3)
    速度/
    (m·s–1)
    孔径/
    mm
    局部动量
    比LMR
    998.212.5, 15.0, 17.5,
    20.0, 22.5, 25.0
    1.30.38, 0.55, 0.74,
    0.97, 1.23, 1.52
    下载: 导出CSV
  • [1]

    岳春国, 李进贤, 侯晓, 冯喜平, 杨姝君 2009 中国科学: 技术科学 39 464Google Scholar

    Yue C G, Li J X, Hou X, Feng X P, Yang S J 2009 Sci. Sin.: Tech. 39 464Google Scholar

    [2]

    张雪松 2017 卫星与网络 6 40Google Scholar

    Zhang X S 2017 Satell. Network 6 40Google Scholar

    [3]

    Heister S D 2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science Business Media) pp647−655

    [4]

    Son M, Radhakrishnan K, Yoon Y, Koo J 2017 Acta Astronaut. 135 139Google Scholar

    [5]

    Dressler G A, Bauer J M 2000 36th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference and Exhibit Huntsville, Alabama, July 16–19, 2000 p2000

    [6]

    Ninish S, Vaidyanathan A, Nandakumar K 2018 Exp. Therm. Fluid Sci. 97 324Google Scholar

    [7]

    方昕昕, 沈赤兵, 张新桥 2016 航空动力学报 31 3004Google Scholar

    Fang X X, Shen C B, Zhang X Q 2016 J. Aerosp. Power 31 3004Google Scholar

    [8]

    方昕昕, 沈赤兵 2017 航空动力学报 32 2291Google Scholar

    Fang X X, Shen C B 2017 J. Aerosp. Power 32 2291Google Scholar

    [9]

    Son M, Yu K, Radhakrishnan K, Shin B, Koo J 2016 J. Therm. Sci. 25 90Google Scholar

    [10]

    刘昌波 2014 博士学位论文(西安: 西安航天动力研究所)

    Liu C B 2014 Ph. D. Dissertation (Xi’an: Xi’an Aerospace Propulsion Institute) (in Chinese)

    [11]

    Yates C L 1971 Proceedings of the 7 th Propulsion Joint Specialist Conference Salt Lake City, June 14–18, 1971 p724

    [12]

    Kush E A, Schetz J A 1973 AIAA J. 11 1223Google Scholar

    [13]

    Schetz J A, Kush E A, Joshi P B 1980 AIAA J. 18 774Google Scholar

    [14]

    陈亮, 乐嘉陵, 宋文艳, 杨顺华, 曹娜 2011 实验流体力学 25 29Google Scholar

    Cheng L, Le J L, Song W Y, Yang S H, Cao N 2011 J. Exp. Fluid Mech. 25 29Google Scholar

    [15]

    曹娜, 徐青, 曹亮, 雷岚, 韩长材, 马继明, 杜继业 2013 现代应用物理 4 323Google Scholar

    Cao N, Xu Q, Cao L, Lei L, Han C C, Ma J M, Du J Y 2013 Mod. Appl. Phys. 4 323Google Scholar

    [16]

    Yang S H, Le J L 2006 Proceedings of the 12th Chinese National Symposium on ShockWaves Luoyang, July 24, 2006 p70

    [17]

    徐胜利, Archer R D, Milton B E, 岳朋涛 2000 中国科学:技术科学 30 179Google Scholar

    Xu S L, Archer R D, Milton B E, Yue P T 2000 Sci. Sin.: Tech. 30 179Google Scholar

    [18]

    刘楠 2019 博士学位论文 (长沙: 国防科技大学)

    Liu N 2019 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [19]

    Xiao F, Wang Z G, Sun M B, Liang J H, Liu N 2016 Int. J. Multiph. Flow 87 229Google Scholar

    [20]

    Xiao F, Sun M B 2019 Atom. Sprays 28 975Google Scholar

    [21]

    李春, 沈赤兵, 李清廉, 朱元昊 2019 国防科技大学学报 41 73Google Scholar

    Li C, Shen C B, Li Q L, Zhu Y H 2019 J. Natl. Univ. Def. Technol. 41 73Google Scholar

    [22]

    Cheng P, Li Q L, Chen H Y 2019 Acta Astronaut. 154 61Google Scholar

    [23]

    Chen H Y, Li Q L, Cheng P 2019 Acta Astronaut. 162 424Google Scholar

    [24]

    吴里银, 王振国, 李清廉, 李春 2016 物理学报 65 094701Google Scholar

    Wu L Y, Wang Z G, Li Q L, Li C 2016 Acta Phys. Sin. 65 094701Google Scholar

    [25]

    Wu L Y, Wang Z G, Li Q L, Li C 2016 J. Vis. 19 337Google Scholar

    [26]

    Lin K C, Kirkendall K A, Kennedy P J, Jackson T A 1999 Proceedings of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Los Angeles, California, June 20–24, 1999 p2374

    [27]

    Sallam K A, Aalburg C, Faeth G M, Lin K C, Carter C D, Jackson T A 2004 Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5–8, 2004 p970

    [28]

    Sallam K A, Aalburg C, Faeth G M 2004 AIAA J. 42 2529Google Scholar

    [29]

    Richards J R, Lenhoff A M, Beris A N 1994 Phys. Fluids 6 2640Google Scholar

    [30]

    Srinivasan V, Salazar A J, Saito K 2011 Appl. Math. Model. 35 3710Google Scholar

    [31]

    Herrmann M 2011 Proc. Combust. Inst. 33 2079Google Scholar

    [32]

    Desjardins O, Pitsch H 2009 J. Comput. Phys. 228 1658Google Scholar

    [33]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [34]

    Xiao F, Wang Z G, Sun M B, Liu N, Yang X 2017 Proc. Combust. Inst. 36 2417Google Scholar

    [35]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 024705Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 024705Google Scholar

    [36]

    Li X Y, Soteriou M C, Arienti M, Sussman M M 2011 Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4–7, 2011 p99

    [37]

    Fontes D H, Vilela V, Souza Meira L D, Souza F J 2019 Int. J. Multiph. Flow 114 98Google Scholar

    [38]

    Chu W, Li X Q, Tong Y H, Reng Y J 2020 Acta Astronaut. 175 204Google Scholar

    [39]

    Liu N, Wang Z G, Sun M B, Deiterding R, Wang H B 2019 Aerosp. Sci. Technol. 91 456Google Scholar

    [40]

    Li P B, Wang Z G, Sun M B, Wang H B 2017 Acta Astronaut. 134 333Google Scholar

    [41]

    李佩波, 王振国, 孙明波, 汪洪波 2016 宇航学报 37 209Google Scholar

    Li P B, Wang Z G, Sun M B, Wang H B 2016 J. Astronaut. 37 209Google Scholar

    [42]

    成鹏 2018 博士学位论文 (长沙: 国防科技大学)

    Cheng P 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [43]

    Wu P K, Kirkendall K A, Fuller R P, Nejad A S 1997 J. Propul. Power 13 64Google Scholar

  • [1] 金烜, 沈赤兵. 横向气膜作用下液体射流在近喷孔区域的破碎雾化特性. 物理学报, 2022, 71(11): 114701. doi: 10.7498/aps.71.20212374
    [2] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [3] 钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流撞击壁面颗粒膜表面波纹特征. 物理学报, 2016, 65(21): 214501. doi: 10.7498/aps.65.214501
    [4] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型. 物理学报, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [5] 胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱. 基于润湿阶跃的水下大尺度气膜封存方法. 物理学报, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [6] 陈卫军, 卢克清, 惠娟利, 王春香, 于会敏, 胡凯. LiNbO3晶体界面非线性表面波的研究. 物理学报, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [7] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [8] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响. 物理学报, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [9] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [10] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [11] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [12] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [13] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究. 物理学报, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [14] 孙彤彤, 卢克清, 陈卫军, 姚风雪, 牛萍娟, 于莉媛. 在金属与光折变晶体界面形成的表面波研究. 物理学报, 2013, 62(3): 034204. doi: 10.7498/aps.62.034204
    [15] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [16] 王伟, 曹祥玉, 王帅, 王瑞, 郑秋容. 支撑介质对平面型电磁带隙结构带隙特性的影响. 物理学报, 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [17] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [18] 梁志伟, 孙海龙, 王之江, 徐 杰, 徐跃民. 等离子体天线输入阻抗测量及分析. 物理学报, 2008, 57(7): 4292-4297. doi: 10.7498/aps.57.4292
    [19] 苗润才, 杨宗立. 液体表面波物理特性及其光学效应的研究. 物理学报, 1996, 45(9): 1521-1525. doi: 10.7498/aps.45.1521
    [20] 王佐卿, 周素华, 汪承浩. 声表面波在声栅上的Bragg衍射. 物理学报, 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
计量
  • 文章访问数:  6640
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-11-06
  • 上网日期:  2021-02-21
  • 刊出日期:  2021-03-05

/

返回文章
返回