搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质

万明杰 柳福提 黄多辉

考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质

万明杰, 柳福提, 黄多辉
PDF
HTML
导出引用
导出核心图
  • 采用高精度的从头算方法研究了SeH阴离子的基态(X1Σ+)和低激发(a3Π, A1Π, b3Σ+, 21Σ+)的势能曲线、偶极矩和跃迁偶极矩. 在计算中考虑了价-芯(CV)电子关联、Davidson修正、标量相对论修正和自旋-轨道耦合效应(SOC). 考虑了SOC效应后, $ {{\rm{b}}^3}\Sigma _{{0^ - }}^ + $$ {{\rm{b}}^3}\Sigma _{{1}}^ + $态变为了弱束缚态. 计算得到$ {{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow $${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$$ {{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁具有很大的跃迁偶极矩. 这三种跃迁都同时具有高对角分布的弗兰克-康登因子f00及振动分支比R00. 计算得到了$ {{\rm{a}}^3}{\Pi _{{1}}}$, $ {{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$$ {{\rm{A}}^1}{\Pi _{{1}}}$激发态的自发辐射寿命都很短, 能够实现对SeH阴离子的快速激光冷却. $ {{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁为三能级跃迁, 中间态的存在对构建准闭合的循环能级的影响可以忽略. 驱动$ {{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, $ {{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $$ {{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁进行激光冷却SeH阴离子的激光波长都在可见光范围内. 本文的结果为以后激光冷却SeH阴离子的实验提供了部分理论参考.
      通信作者: 黄多辉, hdhzhy912@163.com
    • 基金项目: 宜宾学院预研项目(批准号: 2019YY06)和计算物理四川省高等学校重点实验室开放基金(批准号: YBXYJSWL-ZD-2020-001) 资助的课题
    [1]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [2]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [3]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416

    [4]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506

    [5]

    You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502

    [6]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101

    [7]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101

    [9]

    Xu L, Wei W, Xia Y, Deng L Z, Yin J P 2017 Chin. Phys. B 26 033702

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001

    [11]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 185 365

    [12]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 182 130

    [13]

    Zeid I, Abdallah R A, El Kork N, Korek M 2020 Spectrochim. Acta. Part A 224 117461

    [14]

    Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 19 27360

    [15]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta. Phys. Sin. 68 063103

    [16]

    Deng B L, Wan M J, Zhao X F, Tang K, Zhang X Q 2020 Spectrochim. Acta. Part A 227 117684

    [17]

    Stoneman R C, Larson D J 1987 Phys. Rev. A 35 2928

    [18]

    Brown J M, Fackerell A D 1982 Physica. Scripta. 25 351

    [19]

    Balasubramanian K, Liao M Z, Han M 1987 Chem. Phys. Lett. 139 551

    [20]

    Binning Jr R C, Curtiss L A 1990 J. Chem. Phys. 92 1860

    [21]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [22]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053

    [23]

    Werner H J, Meyer W 1980 J. Chem. Phys. 73 2342

    [24]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [25]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [26]

    Laughoff S R, Davidson E R 1974 Int. J Quantum. Chem. 8 61

    [27]

    Douglas N, Kroll N M 1974 Ann. Phys. 82 89

    [28]

    Hess B A 1986 Phys. Rev. A 33 3742

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [30]

    DeYonker N J, Peterson K A, Wilson A K 2007 J. Phys Chem A 111 11383

    [31]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [32]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [33]

    Huber K, Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p586

    [34]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp2, 150

    [35]

    Lykke K R, Murray K K, Lineberger W C 1991 Rhys. Rev. A 43 6104

    [36]

    Hotop H, Lineberger W C 1985 J. Phys. Chem. Ref. Data 14 731

    [37]

    Lane I C 2015 Phys. Rev. A 92 022511

    [38]

    You Y, Yang C L, Zhang Q Q, Wang M S, Ma X G, Wang W W 2016 Phys. Chem. Chem. Phys. 18 19838

  • 图 1  X1Σ+, a3Π, A1Π, b3Σ+和21Σ+电子态的势能曲线

    Fig. 1.  Potential energy curves of the X1Σ+, a3Π, A1Π, b3Σ+, and 21Σ+ states.

    图 2  9个Ω电子态的势能曲线

    Fig. 2.  Potential energy curves of nine Ω states.

    图 3  ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _1}$${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$跃迁的跃迁偶极矩

    Fig. 3.  Transition dipole moments of the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _1}$, and ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$ transition.

    图 4  激光冷却SeH阴离子的方案 (a)${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁; (b) ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁

    Fig. 4.  Proposed laser cooling scheme: (a) Using the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition; (b) using the ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition.

    图 5  采用${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁进行激光冷却SeH阴离子的方案

    Fig. 5.  Proposed laser cooling scheme by using the ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition.

    表 1  Λ-S的光谱常数

    Table 1.  Spectroscopic parameters of the Λ-S states.

    Λ-S态来源Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
    X1Σ+ACVQZ-DK1.46942300.7746.107.85073.4870
    AVQZ-DK1.46142380.3245.577.93263.711
    实验[17]1.4696 a7.7289 c
    1.4806 b
    a3Π本文工作第一势阱1.47782206.52123.457.84280.51920642.90
    第二势阱2.1787839.8749.663.440160.45024549.11
    A1Π本文工作第一势阱1.47262373.65127.147.83910.73421240.75
    第二势阱2.2780437.6244.073.09320.14726997.57
    b3Σ+本文工作repulsive
    21Σ+本文工作第一势阱1.61881336.456.19550.22851684.73
    第二势阱4.0808198.909.961.01900.13546349.30
    注: a 为SeH分子基态的平衡核间距的实验值来源于文献[18]; b为SeH分子基态的平衡核间距的实验值来源于文献[33], 结果不准确;
    c 为采用最小二乘法得到转动惯量B.
    下载: 导出CSV

    表 2  第VI主簇氢化物阴离子基态的光谱常数

    Table 2.  Spectroscopic parameters of the ground state X1Σ+ of the Group VI-hydride anions.

    阴离子来源Reωe/cm–1ωeχe/cm–1Be/cm–1De/eV
    OH文献[14]0.96453722.1087.9319.11114.9857
    SH文献[15]1.34352622.0446.669.55903.8793
    SeH本文工作1.46942300.7746.107.85073.487
    TeH文献[16]1.66311973.7336.82726.09963.0568
    下载: 导出CSV

    表 3  Ω态的离解关系

    Table 3.  Calculated dissociation relationships of the Ω states.

    离解通道分子态(Ω)相对能量/cm–1
    ACVQZ-DKAVQZ-DK实验[34-36]
    Se(2P3/2) + H(2S1/2)2, 1, 1, 0+, 0000
    Se(2P1/2) + H(2S1/2)1, 0+, 02303.772192.98
    Se(1D2) + H(1S0)0+20032.2419047.4519790.88
    下载: 导出CSV

    表 4  Ω电子态的光谱常数

    Table 4.  Spectroscopic parameters of the Ω states.

    Ω态Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
    ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $1.46942301.3147.017.84993.3950
    ${{\rm{a}}^3}{\Pi _2}$第一势阱1.47772207.22122.397.84160.52319787.17
    第二势阱2.1739861.0252.103.40810.45423751.54
    ${{\rm{a}}^3}{\Pi _{{1}}}$第一势阱1.47592232.16111.707.84340.56020036.27
    第二势阱2.1822818.1155.643.39290.38624301.10
    ${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$第一势阱1.47782205.83124.977.84850.51321472.52
    第二势阱2.1986778.2873.703.40480.26725261.96
    ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$第一势阱1.47772208.03122.907.84220.52221477.12
    第二势阱2.1619904.1549.023.43550.52725454.22
    ${{\rm{A}}^1}{\Pi _{{1}}}$第一势阱1.47442368.50144.227.82620.68621821.04
    第二势阱排斥态
    ${{\rm{b}}^3}\Sigma _{{0^ - }}^ + $第一势阱3.1807318.8935.641.69880.09628945.41
    ${{\rm{b}}^3}\Sigma _{{1}}^ + $第二势阱3.2046239.1330.941.66620.06629184.63
    ${2^1}\Sigma _{{0^ + }}^ + $第一势阱1.61901332.506.18950.22551714.58
    第二势阱4.0800190.578.841.01900.13546351.94
    下载: 导出CSV

    表 5  ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $${{\rm{A}}^1}{\Pi _1} \leftrightarrow $${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$跃迁的辐射系数${A_{\upsilon '\upsilon ''}}$、弗兰克-康登因子${f_{\upsilon '\upsilon ''}}$和振动分支比${R_{\upsilon '\upsilon ''}}$

    Table 5.  Emission rates ${A_{\upsilon '\upsilon ''}}$, Franck-Condon Factors ${f_{\upsilon '\upsilon ''}}$, branching ratios ${R_{\upsilon '\upsilon ''}}$ of the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, and ${{\rm{A}}^1}{\Pi _1} \leftrightarrow $ ${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$ transitions.

    Index${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow $
    ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $
    ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow $
    ${{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $
    ${{\rm{A}}^1}{\Pi _1} \leftrightarrow$
    $ {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $
    ${f_{\upsilon '\upsilon ''}}$f000.99490.99220.9974
    f010.00470.00720.0025
    f020.00040.00060.0001
    f100.00510.00790.0026
    f110.95410.93240.9792
    f120.03370.04860.0159
    ${A_{\upsilon '\upsilon ''}}\rm /s$A005.02×1068.02×1041.36×107
    A011.88×1024.28×1031.87×104
    A022.81×1017.48×1012.00×103
    A101.10×1056.50×1025.79×104
    A114.13×1069.13×1041.32×107
    A121.32×1041.57×1041.45×105
    ${R_{\upsilon '\upsilon ''}}$R000.999960.94840.9985
    R013.7×10–50.05060.0014
    R025.6×10–60.00090.0001
    R100.025920.00600.0043
    R110.97070.83940.9836
    R120.00310.14460.0108
    下载: 导出CSV
  • [1]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820

    [2]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001

    [3]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416

    [4]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506

    [5]

    You Y, Yang C L, Wang M S, Ma X G, Liu W W 2015 Phys. Rev. A 92 032502

    [6]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101

    [7]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101

    [9]

    Xu L, Wei W, Xia Y, Deng L Z, Yin J P 2017 Chin. Phys. B 26 033702

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001

    [11]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 185 365

    [12]

    Zhang Q Q, Yang C L, Wang M S, Ma X G, Liu W W 2017 Spectrochim. Acta. Part A 182 130

    [13]

    Zeid I, Abdallah R A, El Kork N, Korek M 2020 Spectrochim. Acta. Part A 224 117461

    [14]

    Wan M J, Huang D H, Yu Y, Zhang Y G 2017 Phys. Chem. Chem. Phys. 19 27360

    [15]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta. Phys. Sin. 68 063103

    [16]

    Deng B L, Wan M J, Zhao X F, Tang K, Zhang X Q 2020 Spectrochim. Acta. Part A 227 117684

    [17]

    Stoneman R C, Larson D J 1987 Phys. Rev. A 35 2928

    [18]

    Brown J M, Fackerell A D 1982 Physica. Scripta. 25 351

    [19]

    Balasubramanian K, Liao M Z, Han M 1987 Chem. Phys. Lett. 139 551

    [20]

    Binning Jr R C, Curtiss L A 1990 J. Chem. Phys. 92 1860

    [21]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010.1)

    [22]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053

    [23]

    Werner H J, Meyer W 1980 J. Chem. Phys. 73 2342

    [24]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [25]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [26]

    Laughoff S R, Davidson E R 1974 Int. J Quantum. Chem. 8 61

    [27]

    Douglas N, Kroll N M 1974 Ann. Phys. 82 89

    [28]

    Hess B A 1986 Phys. Rev. A 33 3742

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [30]

    DeYonker N J, Peterson K A, Wilson A K 2007 J. Phys Chem A 111 11383

    [31]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [32]

    Le Roy R J 2007 LEVEL 8.0: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [33]

    Huber K, Herzberg G 1979 Molecular Spectra and Molecular Structure Vol. 4. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) p586

    [34]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: US Govt Printing Office) pp2, 150

    [35]

    Lykke K R, Murray K K, Lineberger W C 1991 Rhys. Rev. A 43 6104

    [36]

    Hotop H, Lineberger W C 1985 J. Phys. Chem. Ref. Data 14 731

    [37]

    Lane I C 2015 Phys. Rev. A 92 022511

    [38]

    You Y, Yang C L, Zhang Q Q, Wang M S, Ma X G, Wang W W 2016 Phys. Chem. Chem. Phys. 18 19838

  • 引用本文:
    Citation:
计量
  • 文章访问数:  456
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-09-21
  • 上网日期:  2021-01-26
  • 刊出日期:  2021-02-05

考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质

    基金项目: 宜宾学院预研项目(批准号: 2019YY06)和计算物理四川省高等学校重点实验室开放基金(批准号: YBXYJSWL-ZD-2020-001) 资助的课题

摘要: 采用高精度的从头算方法研究了SeH阴离子的基态(X1Σ+)和低激发(a3Π, A1Π, b3Σ+, 21Σ+)的势能曲线、偶极矩和跃迁偶极矩. 在计算中考虑了价-芯(CV)电子关联、Davidson修正、标量相对论修正和自旋-轨道耦合效应(SOC). 考虑了SOC效应后, $ {{\rm{b}}^3}\Sigma _{{0^ - }}^ + $$ {{\rm{b}}^3}\Sigma _{{1}}^ + $态变为了弱束缚态. 计算得到$ {{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow $${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$$ {{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁具有很大的跃迁偶极矩. 这三种跃迁都同时具有高对角分布的弗兰克-康登因子f00及振动分支比R00. 计算得到了$ {{\rm{a}}^3}{\Pi _{{1}}}$, $ {{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$$ {{\rm{A}}^1}{\Pi _{{1}}}$激发态的自发辐射寿命都很短, 能够实现对SeH阴离子的快速激光冷却. $ {{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁为三能级跃迁, 中间态的存在对构建准闭合的循环能级的影响可以忽略. 驱动$ {{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, $ {{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $$ {{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁进行激光冷却SeH阴离子的激光波长都在可见光范围内. 本文的结果为以后激光冷却SeH阴离子的实验提供了部分理论参考.

English Abstract

    • 由于分子内部能级的复杂性, 首次激光冷却分子的实验于2010年实现, Shuman等[1]采用横向激光冷却技术对SrF分子进行了冷却. 2013年, Hummon等[2]采用同样的技术实现了YO分子的冷却. 这是1个三能级体系, 其存在1个中间态A′2Δ3/2. 2014年, Zhelyazkova等[3]采用纵向激光冷却技术对CaF分子进行了冷却. 近十年, 有很多学者对一系列的双原子分子进行了激光冷却的理论研究, 如MgH[4], LiBe[5], CH[6], AlCl[7], OH[8], BaF[9]等.

      相比于中性分子和分子阳离子, 双原子分子阴离子具有更加复杂的能级, 光谱数据非常缺乏, 直到2015年, Yzombard等[10]才首次从理论上预测了激光冷却双原子分子阴离子的可能性. 随后激光冷却阴离子吸引了越来越多学者的关注[11-16]. 鲁东大学的杨传路教授等预测了激光冷却NH[11]和BH[12]阴离子的冷却途径. Zeid等[13]在自旋无关水平下计算了XH (X = Mg, Ca, Sr, Ba)体系的势能曲线和跃迁偶极矩. XH体系的11Π $ \leftrightarrow $ X1Σ+跃迁均具有很大的跃迁偶极矩和对角化的弗兰克-康登因子, 他们认为这些阴离子可能是激光冷却的潜在候选体系. 在我们前期的工作中, 研究了激光冷却VI簇氢化物的阴离子(OH, SH, TeH)的可能性[14-16]. SeH在实验上和理论上都是一种重要的自由基, 也是一种比较简单的重原子分子. 本文将主要研究在考虑自旋-轨道耦合效应(SOC)下SeH阴离子的光谱和跃迁性质, 并讨论其激光冷却的可行性.

      迄今为止, 对SeH阴离子的光谱常数的实验和理论研究很少. 1987年, Stoneman和Larson[17]在磁场中采用光致分离技术观察SeH阴离子, 他们得到了SeH基态的平衡核间距Re是SeH分子基态1.0038(3)倍. 同时采用最小二乘法得到了转动常数B为7.7289 cm–1. 1982年, Brown和Fackerell[18]采用CO激光磁共振观察了SeD和SeH分子的振转光谱, 得到了SeH分子基态X2Π的平衡核间距为1.4640715(25) Å. 1987年, Balasubramanian等[19]采用二阶组态相互作用方法计算了SeH和SeH+较低电子态的势能曲线, 并得到了SeH和SeH+基态的平衡核间距分别为1.467 Å和1.58 Å. 1990年, Binning Jr和Curtiss[20]采用Hartree-Fock方法计算得到SeH基态的平衡核间距为1.463 Å. 到目前为止, 没有发现针对SeH阴离子的跃迁性质的理论或实验研究.

      本文将在SOC水平下研究SeH阴离子的基态(X1Σ+)和低激发(a3Π, A1Π, b3Σ+, 21Σ+)的势能曲线和跃迁偶极矩, 拟合得到各束缚态的光谱常数, 预测其弗兰克-康登因子、振动分支比和自发辐射系数, 最后讨论其激光冷却的可能性, 并给出其冷却途径.

    • 本文采用从头算方法计算了SeH阴离子4个Λ-S态(X1Σ+, a3Π, 11Π, b3Σ+)的电子结构. 在计算中增加了21Σ+态, 以便比较11Π和21Σ+态的能级高低. 所有计算都在MOLPRO 2010程序包[21]下完成. X1Σ+, a3Π, 11Π, b3Σ+态对应于最低离解极限Se(2Pu)+H(2Sg), 第二离解极限为Se(3Pg) + H(1Sg), 其对应的电子态只能是3重态, 所以第二个1Σ+态对应于第三离解通道Se(1Du) + H(1Sg). 首先, 采用限制性的Hartree-Fock方法对SeH阴离子进行波函数的初始猜测, 得到初始波函数; 然后, 采用完全活动空间自洽场方法(CASSCF)[22,23]产生多参考的波函数; 最后, 采用多参考组态相互作用方法(MRCI)[24,25]得到各Λ-S态的能量, 同时也考虑了Davidson修正[26]. 通过二阶Douglas-Kroll哈密顿量[27,28]来考虑标量相对论效应.

      在CASSCF中, Se原子的1s2s壳层为冻结轨道, 6个分子轨道被选为活性轨道, 包括H原子1s和Se原子4s4p5s壳层, 8个电子占据了(4, 1, 1, 0)活性轨道, 写为CAS(8, 6), Se原子的1s2s2p3s3p为冻结轨道, Se原子的3d轨道为双占据的闭壳层. 在MRCI计算中, 价-芯(CV)电子关联被考虑, CASSCF过程中的闭壳层Se(3d)的10个电子参与CV关联计算. 而Se原子的1s2s2p3s3p仍被冻结. 此外, 本文在MRCI+Q水平下通过Breit-Pauli算符[29]考虑了SOC效应. 在Λ-S和Ω态的所有计算中, Se原子选择了aug-cc-pCVQZ-DK (ACVQZ-DK)全电子基组[30], H原子选择了aug-cc-pVQZ-DK(AVQZ-DK)全电子基组[31].

      采用LEVEL8.0程序[32], 通过求解径向薛定谔方程得到SeH阴离子低电子态的光谱常数、弗兰克-康登因子、自发辐射系数和自发辐射寿命.

    • 计算了SeH阴离子X1Σ+, a3Π, 11Π和b3Σ+态的势能曲线, 这4个电子态有1个共同的离解通道Se(2Pu) + H(2Sg). 为了确定11Π态的能级顺序, 同时计算了第二个1Σ+态. 它对应于第三离解通道Se(1Du) + H(1Sg). 所计算的电子态的势能曲线如图1所示. 可以看出11Π是单重态的第一激发态, 写为A1Π.

      图  1  X1Σ+, a3Π, A1Π, b3Σ+和21Σ+电子态的势能曲线

      Figure 1.  Potential energy curves of the X1Σ+, a3Π, A1Π, b3Σ+, and 21Σ+ states.

      SeH阴离子的基态为X1Σ+, 具有1个很深的势阱, 其离解能De为3.729 eV. X1Σ+态在平衡核间距Re处的主要组态为(1σ2224224244)7σ224, 简写为(core)7σ224, 其权重为90.8%. Stoneman和Larson[17]观察到SeH基态的平衡核间距Re(X1Σ+)是SeH分子Re(X2Π)的1.0038倍. Brown和Larson[18]测得SeH分子基态X2Π的平衡核间距Re为1.464 Å. 虽然Huber和Herzberg[33]收集了SeH分子基态的实验值为1.475 Å, 但结果不准确. 本文的计算值为1.4694 Å (表1), 只比实验值[17,18]小0.0002 Å, 相对误差仅为0.01%. 本文计算的转动常数Be为7.8507 cm–1, 比采用最小二乘法拟合得到的实验值[17]大1.58%. 可以看出本文计算结果与已有的实验值符合很好. 同时基态的谐振频率(ωe)和非谐振频率(ωeχe)也列于表1中, 分别为2300.77和46.10 cm–1. 同时在MRCI+Q/AVQZ-DK水平下计算了SeH阴离子低激发态的势能曲线, 在计算中没有考虑CV关联效应, 基态的光谱常数也列于表1中, 可以看出考虑CV关联后, 基态的光谱常数(Re, Be)和已有实验值符合的更好.

      Λ-S态来源Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
      X1Σ+ACVQZ-DK1.46942300.7746.107.85073.4870
      AVQZ-DK1.46142380.3245.577.93263.711
      实验[17]1.4696 a7.7289 c
      1.4806 b
      a3Π本文工作第一势阱1.47782206.52123.457.84280.51920642.90
      第二势阱2.1787839.8749.663.440160.45024549.11
      A1Π本文工作第一势阱1.47262373.65127.147.83910.73421240.75
      第二势阱2.2780437.6244.073.09320.14726997.57
      b3Σ+本文工作repulsive
      21Σ+本文工作第一势阱1.61881336.456.19550.22851684.73
      第二势阱4.0808198.909.961.01900.13546349.30
      注: a 为SeH分子基态的平衡核间距的实验值来源于文献[18]; b为SeH分子基态的平衡核间距的实验值来源于文献[33], 结果不准确;
      c 为采用最小二乘法得到转动惯量B.

      表 1  Λ-S的光谱常数

      Table 1.  Spectroscopic parameters of the Λ-S states.

      图1可以看到b3Σ+是1个排斥态. 其他3个激发态都是具有双势阱结构的束缚态. a3Π, A1Π和21Σ+态的第一势阱分别位于比基态高20642.90, 21240.75, 51684.73 cm–1处, 势阱深度分别为0.518, 0.737, 0.205 eV; 其平衡核间距Re分别为1.4679, 1.4627, 1.6113 Å. 在平衡核间距位置处的主要组态分别为(core)7σ22α3$\pi_x^{\text{α}}$3$\pi_y^{\text{αβ}}$, (core)7σ22α3$\pi_x^{\text{β}}$3$ \pi_y^{\text{αβ}} $ 和(core)7σ2αβ4, 权重分别为91.32%, 91.36%和88.28%. X1Σ+→A1Π和X1Σ+ → 21Σ+跃迁主要是由3πx → 9σ和8σ → 9σ跃迁引起的. 由于a3Π, A1Π和21Σ+态电偶极矩的曲线非常平滑, 没有发生突变, 可以推测这3个电子态都可能由预解离所致. 从图1可以看出这3个态分别约在1.98, 2.04, 2.12 Å处发生预解离. a3Π, A1Π和21Σ+态的第二势阱的平衡核间距Re分别为2.1787, 2.2780, 4.0808 Å. 其势阱深度分别为0.450, 0.147, 0.135 eV. 由于阴离子体系的光谱常数的实验值非常少, 本文对比了第VI主簇氢化物阴离子基态的光谱常数, 分别列于表2中, 可以看出随着第VI主簇原子质量的增加, 其氢化物阴离子基态的平衡核间距Re逐渐地增大, 但其氢化物阴离子基态的谐振频率ωe、非谐振频率ωeχe和势阱深度De都逐渐地减小.

      阴离子来源Reωe/cm–1ωeχe/cm–1Be/cm–1De/eV
      OH文献[14]0.96453722.1087.9319.11114.9857
      SH文献[15]1.34352622.0446.669.55903.8793
      SeH本文工作1.46942300.7746.107.85073.487
      TeH文献[16]1.66311973.7336.82726.09963.0568

      表 2  第VI主簇氢化物阴离子基态的光谱常数

      Table 2.  Spectroscopic parameters of the ground state X1Σ+ of the Group VI-hydride anions.

      考虑SOC效应后, Se离子的2P原子态分裂为2P1/22P3/2态. ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _2}$, ${{\rm{a}}^3}{\Pi _{{1}}}$, ${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$${{\rm{A}}^{{1}}}{\Pi _{{1}}}$态对应于Se(2P3/2) + H(2S1/2)离解通道, ${{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}, {{\rm{b}}^{{3}}}\Sigma _{{0^ - }}^ + , {{\rm{b}}^3}\Sigma _{{1}}^ + $态对应于Se(2P1/2) + H(2S1/2)离解通道. 本文预测了Se(2P)原子态的分裂常数, ASO(2P1/22P3/2) = 2303.77 cm–1. 另外, ${2^1}\Sigma _{{0^ + }}^ + $对应于较高的离解通道Se(1D2) + H(1S0), 其与最低离解通道的相对能量为20032.24 cm–1, 比实验值[34-36]大241.36 cm–1, 相对误差仅为1.22%, 本文计算值与已有实验值符合很好. Ω态之间的离解关系列于表3. 表3也同样可以看出考虑CV关联效应后, 第三离解极限与最低离解极限的相对能量和已有实验值符合得更好.

      离解通道分子态(Ω)相对能量/cm–1
      ACVQZ-DKAVQZ-DK实验[34-36]
      Se(2P3/2) + H(2S1/2)2, 1, 1, 0+, 0000
      Se(2P1/2) + H(2S1/2)1, 0+, 02303.772192.98
      Se(1D2) + H(1S0)0+20032.2419047.4519790.88

      表 3  Ω态的离解关系

      Table 3.  Calculated dissociation relationships of the Ω states.

      9个Ω态的势能曲线如图2所示, 所计算的电子态都是束缚态, 各Ω态的光谱常数列于表4. 对比表2, 基态${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $的势阱深度比X1Σ+态的要小约0.1 eV. 从图2可看出${{\rm{a}}^3}{\Pi _2}$, ${{\rm{a}}^3}{\Pi _{{1}}}$, ${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$, ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$, ${{\rm{A}}^1}{\Pi _{{1}}}$${{{2}}^1}\Sigma _{{0^ + }}^ + $态具有2个势阱. ${{\rm{a}}^{{3}}}{\Pi _2}$态是第一激发态, 其第一势阱到基态的垂直跃迁能为19787.17 cm–1. a3Π态的第一势阱的分裂常数为: ASO(${{\rm{a}}^3}{\Pi _{{1}}}$${{\rm{a}}^3}{\Pi _2}$) = 249.1 cm–1, ASO(${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$${{\rm{a}}^3}{\Pi _{{1}}}$) = 1436.25 cm–1, ASO(${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$) = 4.60 cm–1. 而a3Π态的第二势阱具有更大的分裂常数, ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$态之间的分裂常数达到了192.26 cm–1. 从图2还可以看出${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$${{\rm{A}}^1}{\Pi _{{1}}}$在2.89 Å处交叉. 考虑SOC效应后, b3Σ+态的2个分裂态${{\rm{b}}^3}\Sigma _{{0^ - }}^ + $${{\rm{b}}^3}\Sigma _{{1}}^ + $态都具有了1个很浅的势阱, 势阱深度分别为0.096和0.066 eV, 平衡核间距分别为3.1807和3.2046 Å, 这两个态都有较大的谐振频率, 均超过200 cm–1, 说明这2个分裂态都是弱束缚态. 同时可以预测处b3Σ+态的分裂常数ASO(${{\rm{b}}^3}\Sigma _{{1}}^ + $${{\rm{b}}^3}\Sigma _{{0^ - }}^ + $)为239.22 cm–1. 同样${{{2}}^1}\Sigma _{{0^ + }}^ + $态的第二势阱也是弱束缚态. 由于${{\rm{A}}^1}{\Pi _{{1}}}$的势阱太小, 可以认为其由弱束缚态变为排斥态. 由于a3Π和b3Σ+态的分裂常数很大, 可以看出SOC效应对SeH阴离子的势能曲线和光谱常数的影响很大.

      图  2  9个Ω电子态的势能曲线

      Figure 2.  Potential energy curves of nine Ω states.

      Ω态Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
      ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $1.46942301.3147.017.84993.3950
      ${{\rm{a}}^3}{\Pi _2}$第一势阱1.47772207.22122.397.84160.52319787.17
      第二势阱2.1739861.0252.103.40810.45423751.54
      ${{\rm{a}}^3}{\Pi _{{1}}}$第一势阱1.47592232.16111.707.84340.56020036.27
      第二势阱2.1822818.1155.643.39290.38624301.10
      ${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}}$第一势阱1.47782205.83124.977.84850.51321472.52
      第二势阱2.1986778.2873.703.40480.26725261.96
      ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$第一势阱1.47772208.03122.907.84220.52221477.12
      第二势阱2.1619904.1549.023.43550.52725454.22
      ${{\rm{A}}^1}{\Pi _{{1}}}$第一势阱1.47442368.50144.227.82620.68621821.04
      第二势阱排斥态
      ${{\rm{b}}^3}\Sigma _{{0^ - }}^ + $第一势阱3.1807318.8935.641.69880.09628945.41
      ${{\rm{b}}^3}\Sigma _{{1}}^ + $第二势阱3.2046239.1330.941.66620.06629184.63
      ${2^1}\Sigma _{{0^ + }}^ + $第一势阱1.61901332.506.18950.22551714.58
      第二势阱4.0800190.578.841.01900.13546351.94

      表 4  Ω电子态的光谱常数

      Table 4.  Spectroscopic parameters of the Ω states.

    • 考虑SOC效应后, ${{\rm{a}}^3}{\Pi _{{2}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $${{\rm{a}}^3}{\Pi _{{{{0}}^ - }}} \leftrightarrow $${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$跃迁不被允许. 本文计算了${{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^3}{\Pi _{{1}}}$${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$跃迁的跃迁偶极矩, 其与核间距的函数关系如图3所示. 可以看出${{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁在弗兰克-康登区域具有很大的跃迁偶极矩, 在平衡核间距处分别达到了–2.05 Debye (D)和1.45 D. 值得注意的是, ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \leftrightarrow$$ {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁也具有较大的偶极矩, 在平衡核间距处为–0.15 D. 在讨论激光冷却SeH阴离子的过程中必须要考虑${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \!\leftrightarrow \!{{\rm{X}}^1}\Sigma _{{0^ + }}^ +$跃迁. 由于${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{1}}}$${{\rm{A}}^{{1}}}{\Pi _{{1}}}$来源于同一离解通道, 故当核间距大于6 Å后${{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^3}{\Pi _{{1}}}$跃迁的跃迁偶极矩均趋于零. ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$跃迁在核间距趋于无穷大时源于Se离子的2P3/2 $ \leftrightarrow $ 2P1/2跃迁. 由于其跃迁强度很小, 故核间距大于8 Å后${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \!\leftrightarrow\! {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ +$${{\rm{A}}^{{1}}}{\Pi _{{1}}} \!\leftrightarrow$${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$跃迁的跃迁偶极矩也趋于零.

      图  3  ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _1}$${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$跃迁的跃迁偶极矩

      Figure 3.  Transition dipole moments of the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, ${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _1}$, and ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$ transition.

    • 基于精确的势能曲线和跃迁偶极矩, 本文计算了${{\rm{A}}^1}{\Pi _{{1}}} \!\leftrightarrow\! {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ +$, ${{\rm{a}}^{{3}}}{\Pi _{{1}}} \!\leftrightarrow\! {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ +$${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \!\leftrightarrow\! {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ +$跃迁的弗兰克-康登因子${f_{\upsilon '\upsilon ''}}$和自发辐射系数${A_{\upsilon '\upsilon ''}}$. 由于在激光冷却循环过程中光子损失路径的相对强度与振动分支比${R_{\upsilon '\upsilon ''}}$有直接关系[37]. 振动分支比可以表示为

      ${R_{\upsilon '\upsilon ''}} = {A_{\upsilon '\upsilon ''}}\Big/\sum\limits_{\upsilon} {{A_{\upsilon '\upsilon ''}}} ,$

      其中, ${A_{\upsilon '\upsilon ''}}$表示${{\rm{A}}^{{1}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^{{3}}}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁的自发辐射系数. 表5列出了以上3种跃迁的弗兰克-康登因子、自发辐射系数和振动分支比. 本文分别讨论自旋阻禁和直接跃迁2种情况来进行激光冷却SeH阴离子的可能性.

      Index${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow $
      ${{\rm{X}}^1}\Sigma _{{0^ + }}^ + $
      ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow $
      ${{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $
      ${{\rm{A}}^1}{\Pi _1} \leftrightarrow$
      $ {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $
      ${f_{\upsilon '\upsilon ''}}$f000.99490.99220.9974
      f010.00470.00720.0025
      f020.00040.00060.0001
      f100.00510.00790.0026
      f110.95410.93240.9792
      f120.03370.04860.0159
      ${A_{\upsilon '\upsilon ''}}\rm /s$A005.02×1068.02×1041.36×107
      A011.88×1024.28×1031.87×104
      A022.81×1017.48×1012.00×103
      A101.10×1056.50×1025.79×104
      A114.13×1069.13×1041.32×107
      A121.32×1041.57×1041.45×105
      ${R_{\upsilon '\upsilon ''}}$R000.999960.94840.9985
      R013.7×10–50.05060.0014
      R025.6×10–60.00090.0001
      R100.025920.00600.0043
      R110.97070.83940.9836
      R120.00310.14460.0108

      表 5  ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $${{\rm{A}}^1}{\Pi _1} \leftrightarrow $${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$跃迁的辐射系数${A_{\upsilon '\upsilon ''}}$、弗兰克-康登因子${f_{\upsilon '\upsilon ''}}$和振动分支比${R_{\upsilon '\upsilon ''}}$

      Table 5.  Emission rates ${A_{\upsilon '\upsilon ''}}$, Franck-Condon Factors ${f_{\upsilon '\upsilon ''}}$, branching ratios ${R_{\upsilon '\upsilon ''}}$ of the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $, ${{\rm{a}}^{{3}}}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^{{1}}}\Sigma _{{0^ + }}^ + $, and ${{\rm{A}}^1}{\Pi _1} \leftrightarrow $ ${{\rm{X}}^1}\Sigma _{{0^ + }}^ +$ transitions.

    • ${\rm{a}}^{3}{\Pi }_{1}(\upsilon') \!\leftrightarrow\! {\rm X}^1\Sigma_{0^+}^+(\upsilon'')$, ${\rm a}^3\Pi_{0^+}(\upsilon') \!\leftrightarrow\! {\rm X}^1\Sigma_{0^+}^+ (\upsilon'') $阻禁跃迁都有高对角分布的弗兰克-康登因子f00, 分别为0.9949和0.9922, 相应的振动分支比R00分别为0.99996和0.9484. 高对角分布的f00R00使SeH阴离子满足了激光冷却的首要条件. 同时本文也计算了两种跃迁的非对角项振动分支比. 对于两种跃迁, R00, R01R02的代数和非常接近1, 这可以保证在激光冷却SeH阴离子过程中的准循环跃迁. ${\rm{a}}^{3}{\Pi }_{1}(\upsilon')\leftrightarrow {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}(\upsilon'')$${\rm{a}}^{3}{\Pi }_{{{0}}^{{+}}}(\upsilon')\leftrightarrow$${\rm X}^1 \!\Sigma_{0^+}^{+}\!(\upsilon'')$跃迁也有很大的自发辐射系数, 当υ′ = 0时, 这两种跃迁总的自发辐射系数分别为5.18 × 106和8.45 × 104 s–1, 因此${{\rm{a}}^3}{\Pi _{{1}}}$${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$态的自发辐射寿命分别为0.199和11.8 μs. ${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$态的辐射寿命比杨传路教授等[38]预测的LiRb分子的辐射寿命(τ = 10.26 μs)要略大. 说明这两种跃迁构建的准闭合循环都能快速的冷却SeH阴离子.

      ${\rm{a}}^{3}{\Pi }_{1}(\upsilon')\!\leftrightarrow\! {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}(\upsilon'')$跃迁具有非常大的振动分支比R00, 和TeH阴离子一样, 采用${\rm{a}}^{{3}}{\Pi }_{1} (\upsilon ') \leftrightarrow$$ {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}(\upsilon'') $阻禁跃迁对SeH阴离子进行激光冷却时只需要选取一束主激光来驱动就可以保证跃迁循环的准闭合性, 其散射的光子数目为Nscat = 1/R01+, 理论上可以散射光子数大于2×104个. 所需的主激光波长为501.01 nm. 而${\rm a}^3 \Pi_{0^+} (\upsilon') \leftrightarrow$$ {\rm X}^1\Sigma_{0^+}^+ (\upsilon '') $跃迁的振动分支比R00只有0.9484, 故在一束主激光的基础上增加了两束抽运激光来保证其跃迁循环的准闭合性, 其理论上散射光子数可以达到2.5 × 104个. 所需的主激光波长为λ00 = 467.59 nm, 抽运激光波长分别为λ10 = 521.91和λ21 = 526.15 nm. 其冷却方案绘于图4(a)图4(b)中. 图中的实线表示驱动激光的波长, 虚线表示自发辐射.

      图  4  激光冷却SeH阴离子的方案 (a)${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁; (b) ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁

      Figure 4.  Proposed laser cooling scheme: (a) Using the ${{\rm{a}}^3}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition; (b) using the ${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition.

    • 本文计算得到${\rm{A}}^{1}{\Pi }_{1}\left({\upsilon }{'}\right)\leftrightarrow {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$跃迁的f00R00分别为0.9974和0.9985, 同样其具有很大的自发辐射系数, 为1.36 × 107 s–1, 因此${{\rm{A}}^1}{\Pi _{{1}}}$态的自发辐射寿命为73.5 ns, 其比${{\rm{a}}^{{3}}}{\Pi _{{1}}}$${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$态的辐射寿命要短得多. 采用${\rm{A}}^{1}{\Pi }_{1}\left({\upsilon }{'}\right)\leftrightarrow {\rm{X}}^{{1}}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$跃迁能更快速地冷却SeH阴离子. 在构建${\rm{A}}^{1}{\Pi }_{1}\left({\upsilon }{'}\right)\leftrightarrow {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$准闭合的循环跃迁时存在中间态${{\rm{a}}^3}{\Pi _{{1}}}$${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$, 必须考虑中间态是否对跃迁循环准闭合性有影响. 本文采用振动分支损失比(η)来评估. 振动分支损失比可以表示为

      $ \eta = \gamma /{\gamma _\Sigma }, $

      其中, 对于SeH阴离子, γ1γ2分别表示${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^3}{\Pi _{{1}}}$${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$跃迁的自发辐射系数. 本文的计算值分别为2.31和1.21 × 10–2 s–1. γΣ表示${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $态的自发辐射速率. 这样可以得到η1 = γ1/γΣ < 2.0 × 10–7, η2 = γ2/γΣ < 9.0 × 10–10, 本文的计算结果远远小于YO分子的振动分支损失比(< 4 × 10–4)[2]. 结果表明中间态的存在对激光冷却SeH阴离子几乎没有影响. 可以选取一束主激光来驱动${{\rm{A}}^1}{\Pi _{{1}}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁时, 理论上散射光子数仅为600个. 其主激光波长为459.52 nm. 为了提高冷却效率, 增加了两束抽运激光λ10 = 511.88和λ21 = 512.83 nm, 其理论上散射光子数可达到3.3 × 105个. 相应的三能级跃迁进行激光冷却SeH阴离子的冷却途径如图5所示.

      图  5  采用${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $跃迁进行激光冷却SeH阴离子的方案

      Figure 5.  Proposed laser cooling scheme by using the ${{\rm{A}}^{{1}}}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $ transition.

    • 在MRCI+Q/AVQZ-DK水平下, 本文计算了SeH阴离子5个Λ-S态和9个Ω态的势能曲线. 计算中考虑了标量相对论效应和CV关联效应. 考虑SOC效应后b3Σ+态的2个分裂态变为了弱束缚态. 所有电子态的光谱常数都是首次报道. ${\rm{a}}^{3}{\Pi }_{1} \left({\upsilon }{'}\right) \!\leftrightarrow\! {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$, ${\rm{a}}^{{3}}{\Pi }_{{{0}}^{{+}}}\left({\upsilon }{'}\right)\!\leftrightarrow\! {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$阻禁跃迁和${\rm{A}}^{1}{\Pi }_{1}\left({\upsilon }{'}\right)\leftrightarrow {\rm{X}}^{1}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$三能级跃迁都具有高对角分布的弗兰克-康登因子和振动分支比. 并且${{\rm{a}}^{{3}}}{\Pi _{{1}}}$, ${{\rm{a}}^{{3}}}{\Pi _{{{{0}}^{{ + }}}}}$${{\rm{A}}^{{1}}}{\Pi _{{1}}}$态的自发辐射寿命都很短, 能快速地冷却SeH阴离子. 中间态${{\rm{a}}^3}{\Pi _{{1}}}$${{\rm{a}}^3}{\Pi _{{{{0}}^{{ + }}}}}$的存在不影响构造${\rm{A}}^{1}{\Pi }_{1}\left({\upsilon }{'}\right)\leftrightarrow {\rm{X}}^{{1}}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$准闭合的循环跃迁. 驱动${\rm{a}}^{3}{\Pi }_{1}\left({\upsilon }{'}\right)\leftrightarrow {\rm{X}}^{{1}}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$跃迁只需要一束主激光, 由于振动分支比不够大, 驱动$ {\rm{a}}^{{3}}{\Pi }_{{{0}}^{{+}}} \left({\upsilon }{'}\right) $$\leftrightarrow {\rm{X}}^{{1}}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right)$${\rm{A}}^{{1}}{\Pi }_{1}\left({\upsilon }{'}\right)\leftrightarrow$$ {\rm{X}}^{{1}}{\Sigma }_{{0}^{+}}^{+}\left({\upsilon }{''}\right) $跃迁需要增加两束抽运激光. 所有的激光波长都在可见光的范围内. 本文预测SeH阴离子是适合激光冷却的潜在体系.

参考文献 (38)

目录

    /

    返回文章
    返回