搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于简并四波混频的双信道双频段增益谱

王丹 郭瑞翔 戴玉鹏 周海涛

引用本文:
Citation:

基于简并四波混频的双信道双频段增益谱

王丹, 郭瑞翔, 戴玉鹏, 周海涛

Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands

Wang Dan, Guo Rui-Xiang, Dai Yu-Peng, Zhou Hai-Tao
PDF
HTML
导出引用
  • 基于大规模光通信中频分复用的需求, 本文以热原子的简并四波混频为模型, 研究了具有双频段特性的双信道增益光谱. 一束缀饰场诱导激发态能级发生分裂, 由于量子干涉效应, 四波混频信号的增益在双光子共振处被抑制, 从而使增益谱线的包络由单频段转变为“M”型的双频段结构. 同时, 缀饰场还提高了相干基态的原子布居, 进一步增强了四波混频信号的强度. 最终实验上在铯原子气室内获得了一对具备双频段的双信道高增益光谱, 并通过调节缀饰场的强度和频率失谐, 实现了对双增益峰频率间隔的有效操控.
    Focusing on the frequency division multiplexing technology in the applications of large scale optical communication, the double-channel optical gain spectrum with two frequency bands is studied in this paper. The double-channel gain spectrum, named probe channel and four wave mixing channel, comes from a co-propagating degenerate four wave mixing in a hot atomic ensemble. The intention is to divide the gain spectrum into several sub frequency bands through dressed four wave mixing. When a dressed field is exerted on one transition that shares the common excited state with the degenerate four wave mixing, the excited state can experience dressed splitting. It opens two transition paths for the degenerate four wave mixing simultaneously. Because of quantum interference between the two paths, the degenerate four wave mixing are suppressed at two-photon resonance. Consequently, Autler-Townes splitting appears in the gain spectrum, i.e. spectrum is changed from single frequency band into two “M”-type bands. In this paper, the nonlinear density matrix element describing the degenerate (dressed) four wave mixing is solved through perturbation theory, and then the gain spectrum in Doppler broadening atomic medium is plotted, and its Autler-Townes splitting is analyzed by using the dressed-state theory. It shows that the Autler-Townes splitting depends on both the Rabi frequency and single photon detuning of the dressed field. Relevant experiment is performed in cesium vapor at 60 ℃, a pair of high-gain optical spectra with two frequency bands for both double channels is successfully obtained. Moreover, the Autler-Townes splitting as a function of the dressed field intensity and single photon detuning are studied quantitatively. The experimental results accord well with the theoretical predictions. Compared with the degenerate four wave mixing, the atom-field coupled system is changed from an original open two-level into a closed Λ three-level due to the external dressed field, which greatly improves the atomic population on the coherent ground state via optical pumping, and therefore enhancing the gain significantly. This work is important for the field of atom-based optical communication. It provides an optional way of conveying multi-frequency information to the two parallel channels as well as improving the gain of four wave mixing.
      通信作者: 王丹, wangdan63@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704235)、山西省青年科技研究基金(批准号: 201901D211166)和山西省高等学校科技创新项目(批准号: 2020L0038)资助的课题
      Corresponding author: Wang Dan, wangdan63@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704235), the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 201901D211166), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2020L0038)
    [1]

    Lukin M D, Matsko A B, Fleischhauer M, Scully M O 1999 Phys. Rev. Lett. 82 1847Google Scholar

    [2]

    Balic V, Braje D A, Kolchin P, Yin G Y, Harris S E 2005 Phys. Rev. Lett. 94 183601Google Scholar

    [3]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178Google Scholar

    [4]

    Motomura K, Tsukamoto M, Wakiyama A, Harada K, Mitsunaga M 2005 Phys. Rev. A 71 043817Google Scholar

    [5]

    Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 83 033813

    [6]

    Ma R, Liu W, Qin Z Z, Jia X J, Gao J R 2017 Phys. Rev. A 96 043843Google Scholar

    [7]

    Swaim J D, Glasser R T 2017 Phys. Rev. A 96 033818Google Scholar

    [8]

    Wang D, Hu L Y, Pang X M, Zhang J X, Zhu S Y 2013 Phys. Rev. A 88 042314Google Scholar

    [9]

    Qin Z Z, Cao L M, Wang H L, Marino A M, Zhang W P, Jing J T 2014 Phys. Rev. Lett. 113 023602Google Scholar

    [10]

    Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601Google Scholar

    [11]

    Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [12]

    Boyer V, McCormick C F, Arimondo E, Lett P D 2007 Phys. Rev. Lett. 99 143601Google Scholar

    [13]

    Jing J T, Zhou Z F, Liu C J, Qin Z Z, Fang Y M, Zhou J, Zhang W P 2014 Appl. Phys. Lett. 104 151103Google Scholar

    [14]

    Pooser R C, Marino A M, Boyer V, Jones K M, Lett P D 2009 Phys. Rev. Lett. 103 010501Google Scholar

    [15]

    Kong J, Hudelist F, Ou Z Y, Zhang W P 2013 Phys. Rev. Lett. 111 033608Google Scholar

    [16]

    Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049Google Scholar

    [17]

    Liu W, Ma R, Zeng L, Qin Z Z, Su X L 2019 Opt. Lett. 44 2053Google Scholar

    [18]

    Zhou H T, Li R F, Dai Y P, Wang D, Wu J Z, Zhang J X 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185002Google Scholar

    [19]

    Zhang Y P, Xiao M 2007 Opt. Express 15 7182Google Scholar

    [20]

    Zuo Z C, Sun J, Liu X, Wu L A, Fu P M 2007 Phys. Rev. A 75 023805Google Scholar

    [21]

    Zhang Y P, Anderson B, Xiao M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 045502Google Scholar

    [22]

    Li C B, Zheng H B, Zhang Y P, Nie Z Q, Song J P, Xiao M 2009 Appl. Phys. Lett. 95 041103Google Scholar

    [23]

    李祥, 李培英 2015 激光与光电子学进展 52 051901Google Scholar

    Li X, Li P Y 2015 Las. Optoelect. Prog. 52 051901Google Scholar

    [24]

    桑苏玲 2019 激光与光电子学进展 56 081901Google Scholar

    Sang S L 2019 Las. Optoelect. Prog. 56 081901Google Scholar

    [25]

    Su J J, Yu I A 2003 Chin. J. Phys. 41 627

    [26]

    Novikova I, Matsko A B, Welch G R 2002 J. Mod. Opt. 49 2565Google Scholar

    [27]

    Grischkowsky D 1970 Phys. Rev. Lett. 24 866Google Scholar

  • 图 1  能级图与光场空间波矢量配置图 (a) 二能级DFWM; (b) Λ型三能级dressed-DFWM; (c) 光场空间矢量的相位配置图

    Fig. 1.  Energy level and laser fields’ geometric configuration: (a) Two-level DFWM; (b) Λ-type three-level dressed-DFWM; (c) phase-matching configuration of laser fields’ wave vectors.

    图 2  FWM强度增益谱的理论模拟曲线, 其中虚线为DFWM, 实线为dressed-DFWM, 使用参数为: ${\varOmega _1} \!=\! {\varOmega _2} \!=\! 2{\text{π}} \cdot 110\;{\rm{MHz}}$, ${\varOmega _{\rm{p}}} = 2{\text{π}} \cdot 10\;{\rm{MHz}}$, ${\varGamma _{10}} = 2{\text{π}} \cdot 1\; {\rm{kHz}}$, ${\varGamma _{21}} = {\varGamma _{11}} = 2{\text{π}} \cdot 4.6 $$ \;{\rm{MHz}}$, $T = 60 \;{ ^ \circ }{\rm{C}}$

    Fig. 2.  The theoretical curves of FWM intensity gain spectrum, the dashed curve is for the DFWM, and the solid curve is for the dressed-DFWM. The parameters: ${\varOmega _1} = {\varOmega _2} = 2{\text{π}} \cdot 110\;{\rm{MHz}}$, ${\varOmega _{\rm{p}}} = 2{\text{π}} \cdot 10\;{\rm{MHz}}$, ${\varGamma _{10}} = 2{\text{π}} \cdot 1 $$ \; {\rm{kHz}}$, ${\varGamma _{21}} = {\varGamma _{11}} = 2{\text{π}} \cdot 4.6\;{\rm{MHz}}$, $T = 60 \;{ ^ \circ }{\rm{C}}$.

    图 3  实验装置示意图, 双向箭头代表光场偏振方向, GT: 格兰-泰勒棱镜, S: 光屏, PD: 光电探测器

    Fig. 3.  The sketch of experimental setup. The double-headed arrow stands for the light polarization. GT: Glan-Taylor prism, S: screen, PD: photo detector.

    图 4  光斑图样与增益谱线 (a), (b) 关闭泵浦场${E_1}$时的EIT效应; (c), (d) 关闭缀饰场${E_2}$时的DFWM效应; (e), (f) ${E_1}$, ${E_2}$同时打开时的Dressed-DFWM效应. 实验参数: 泵浦场光功率${P_1} = 40 \;{\rm{ mW}}$, 缀饰场光功率${P_2} = 40 \;{\rm{ mW}}$, 缀饰场失谐$ {\varDelta _2} = 0$

    Fig. 4.  Laser beams’ pattern and gain spectrum: (a), (b) the EIT effect when the pump field ${E_1}$ is turned off; (c), (d) the DFWM effect when the dressed field ${E_2}$ is turned off; (e), (f) the Dressed-DFWM effect when both ${E_1}$ and ${E_2}$ are turned on. Experimental parameters: the pump field power: ${P_1} = 40 \;{\rm{ mW}}$, the dressed field power: ${P_2} = 40\;{\rm{ mW}}$, the dressed field detuning $ {\varDelta _2} = 0$.

    图 5  缀饰场失谐$ {\varDelta _2}$分别为 (i) 0, (ii) $ 2{\text{π}} \cdot 100 \;{\rm{MHz}}$以及 (iii) $ 2{\text{π}} \cdot 200 \;\;{\rm{MHz}}$的增益谱 (a) 探测光信道${E_{\rm{p}}}$; (b) DFWM光信道${E_{\rm{f}}}$. 实验参数: ${P_1} = 40 \;{\rm{mW}}$, ${P_2} = 40 \;{\rm{mW}}$, ${P_{\rm{p}}} = 30\;{\rm{\text{μ} W}}$

    Fig. 5.  Gain spectrum with dressed field detuning $ {\varDelta _2}$ at (i)$ 0$, (ii)$ 2{\text{π}} \cdot 100 \;{\rm{MHz}}$, and (iii)$ 2{\text{π}} \cdot 200 \;\;{\rm{MHz}}$: (a) The probe channel ${E_{\rm{p}}}$; (b) the DFWM channel ${E_{\rm{f}}}$. Experimental parameters: ${P_1} = 40 \;{\rm{mW}}$, ${P_2} = 40 \;{\rm{mW}}$, ${P_{\rm{p}}} = 30\;{\rm{\text{μ} W}}$.

    图 6  (a), (b) 固定$ {\varDelta _2} = 0$时缀饰场功率$P_2$分别为 (i)$ 10\;{\rm{mW}}$, (ii)$ 50\;{\rm{mW}}$以及 (iii)$ 100\;{\rm{mW}}$的增益谱 (a) ${E_{\rm{p}}}$信道; (b) ${E_{\rm{f}}}$信道; (c), (d) AT 分裂间距随缀饰场拉比频率变化的关系曲线: (c)$ {\varDelta _2} = 0$, (d)$ {\varDelta _2} = 2{{\pi}} \cdot 200\;{\rm{MHz}}$. 实验参数: ${P_1} \!=\! 40 \;{\rm{mW}}$, ${P_{\rm{p}}} \!=\! 30 \;{\rm{\text{μ}W}}$

    Fig. 6.  (a, b) Gain spectrum with dressed power at (i)$ 10\;{\rm{mW}}$, (ii)$ 50\;{\rm{mW}}$, and (iii)$ 100\;{\rm{mW}}$ when $ {\varDelta _2} = 0$. (a) The ${E_{\rm{p}}}$ channel; (b) the ${E_{\rm{f}}}$ channel; (c), (d) the curves for the AT splitting versus the dressed field’s Rabi frequencies: (c)$ {\varDelta _2} = 0$, (d) $ {\varDelta _2} = $$ 2{\text{π}} \cdot 200\;{\rm{MHz}}$. Experimental parameters: ${P_1} = 40 \;{\rm{mW}}$, ${P_{\rm{p}}} = 30 \;{\rm{\text{μ} W}}$.

  • [1]

    Lukin M D, Matsko A B, Fleischhauer M, Scully M O 1999 Phys. Rev. Lett. 82 1847Google Scholar

    [2]

    Balic V, Braje D A, Kolchin P, Yin G Y, Harris S E 2005 Phys. Rev. Lett. 94 183601Google Scholar

    [3]

    McCormick C F, Boyer V, Arimondo E, Lett P D 2007 Opt. Lett. 32 178Google Scholar

    [4]

    Motomura K, Tsukamoto M, Wakiyama A, Harada K, Mitsunaga M 2005 Phys. Rev. A 71 043817Google Scholar

    [5]

    Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 83 033813

    [6]

    Ma R, Liu W, Qin Z Z, Jia X J, Gao J R 2017 Phys. Rev. A 96 043843Google Scholar

    [7]

    Swaim J D, Glasser R T 2017 Phys. Rev. A 96 033818Google Scholar

    [8]

    Wang D, Hu L Y, Pang X M, Zhang J X, Zhu S Y 2013 Phys. Rev. A 88 042314Google Scholar

    [9]

    Qin Z Z, Cao L M, Wang H L, Marino A M, Zhang W P, Jing J T 2014 Phys. Rev. Lett. 113 023602Google Scholar

    [10]

    Boyer V, Marino A M, Lett P D 2008 Phys. Rev. Lett. 100 143601Google Scholar

    [11]

    Pan X Z, Yu S, Zhou Y F, Zhang K, Zhang K, Lv S C, Li S J, Wang W, Jing J T 2019 Phys. Rev. Lett. 123 070506Google Scholar

    [12]

    Boyer V, McCormick C F, Arimondo E, Lett P D 2007 Phys. Rev. Lett. 99 143601Google Scholar

    [13]

    Jing J T, Zhou Z F, Liu C J, Qin Z Z, Fang Y M, Zhou J, Zhang W P 2014 Appl. Phys. Lett. 104 151103Google Scholar

    [14]

    Pooser R C, Marino A M, Boyer V, Jones K M, Lett P D 2009 Phys. Rev. Lett. 103 010501Google Scholar

    [15]

    Kong J, Hudelist F, Ou Z Y, Zhang W P 2013 Phys. Rev. Lett. 111 033608Google Scholar

    [16]

    Hudelist F, Kong J, Liu C J, Jing J T, Ou Z Y, Zhang W P 2014 Nat. Commun. 5 3049Google Scholar

    [17]

    Liu W, Ma R, Zeng L, Qin Z Z, Su X L 2019 Opt. Lett. 44 2053Google Scholar

    [18]

    Zhou H T, Li R F, Dai Y P, Wang D, Wu J Z, Zhang J X 2019 J. Phys. B: At. Mol. Opt. Phys. 52 185002Google Scholar

    [19]

    Zhang Y P, Xiao M 2007 Opt. Express 15 7182Google Scholar

    [20]

    Zuo Z C, Sun J, Liu X, Wu L A, Fu P M 2007 Phys. Rev. A 75 023805Google Scholar

    [21]

    Zhang Y P, Anderson B, Xiao M 2008 J. Phys. B: At. Mol. Opt. Phys. 41 045502Google Scholar

    [22]

    Li C B, Zheng H B, Zhang Y P, Nie Z Q, Song J P, Xiao M 2009 Appl. Phys. Lett. 95 041103Google Scholar

    [23]

    李祥, 李培英 2015 激光与光电子学进展 52 051901Google Scholar

    Li X, Li P Y 2015 Las. Optoelect. Prog. 52 051901Google Scholar

    [24]

    桑苏玲 2019 激光与光电子学进展 56 081901Google Scholar

    Sang S L 2019 Las. Optoelect. Prog. 56 081901Google Scholar

    [25]

    Su J J, Yu I A 2003 Chin. J. Phys. 41 627

    [26]

    Novikova I, Matsko A B, Welch G R 2002 J. Mod. Opt. 49 2565Google Scholar

    [27]

    Grischkowsky D 1970 Phys. Rev. Lett. 24 866Google Scholar

  • [1] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [2] 孟腾飞, 田剑锋, 周瑶瑶. 准Λ型四能级系统选择反射光谱. 物理学报, 2020, 69(1): 014206. doi: 10.7498/aps.69.20191099
    [3] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [4] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂. 物理学报, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [5] 孙江, 常晓阳, 张素恒, 熊志强. 应用双非简并四波混频理论研究原子的碰撞效应. 物理学报, 2016, 65(15): 154206. doi: 10.7498/aps.65.154206
    [6] 张蕾, 戈燕, 张向阳. 基于量子相干控制吸收的准Λ型四能级原子局域化研究. 物理学报, 2015, 64(13): 134204. doi: 10.7498/aps.64.134204
    [7] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [8] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究. 物理学报, 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [9] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [10] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频. 物理学报, 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [11] 杜建新. DWDM系统非简并四波混频串扰的分析. 物理学报, 2009, 58(2): 1046-1052. doi: 10.7498/aps.58.1046
    [12] 杨永明, 许启明, 张彦鹏. N5B五能级系统中重复缀饰四波混频研究. 物理学报, 2009, 58(1): 290-297. doi: 10.7498/aps.58.290
    [13] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [14] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态. 物理学报, 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [15] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频. 物理学报, 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
    [16] 杨延强, 费浩生, 魏振乾, 孙桂娟. 激发态吸收的简并四波混频. 物理学报, 1996, 45(2): 210-213. doi: 10.7498/aps.45.210
    [17] 屈卫星, 徐至展. 二阶离化对缀饰态稳定性的影响. 物理学报, 1993, 42(3): 373-378. doi: 10.7498/aps.42.373
    [18] 柳尚青, 夏宇兴. 利用激光腔内后向非简并四波混频直接产生光场压缩态. 物理学报, 1991, 40(11): 1799-1808. doi: 10.7498/aps.40.1799
    [19] 傅盘铭. 多普勒系统中简并四波混频的饱和效应. 物理学报, 1984, 33(7): 927-934. doi: 10.7498/aps.33.927
    [20] 傅盘铭, 叶佩弦. 时间分辨简并四波混频中的量子拍频效应. 物理学报, 1984, 33(11): 1520-1528. doi: 10.7498/aps.33.1520
计量
  • 文章访问数:  5028
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 修回日期:  2020-11-20
  • 上网日期:  2021-05-09
  • 刊出日期:  2021-05-20

/

返回文章
返回