搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大面积α-MoO3的制备及其存储计算研究进展

单欣 王芳 胡凯 魏俊青 林欣 赵轩宇 周宝增 张楷亮

引用本文:
Citation:

大面积α-MoO3的制备及其存储计算研究进展

单欣, 王芳, 胡凯, 魏俊青, 林欣, 赵轩宇, 周宝增, 张楷亮

Recent advances in synthesis and memory computing of large-area α-MoO3

Shan Xin, Wang Fang, Hu Kai, Wei Jun-Qing, Lin Xin, Zhao Xuan-Yu, Zhou Bao-Zeng, Zhang Kai-Liang
PDF
HTML
导出引用
  • 近年来, α-MoO3在忆阻器件的研究中得到广泛关注, 其中氧含量的变化导致电阻率的改变, 以及独特的层状结构有利于各种离子的插层从而调节电导, 因此其在离子栅结构的突触晶体管的研究中发挥出重要作用. 本文主要对层状α-MoO3的基本性质、二维层状α-MoO3的大面积制备方法和特性及其在存储计算领域的应用进展进行了分析. 首先阐述了α-MoO3的晶体结构、能带结构以及缺陷态. 对比了大面积α-MoO3的制备方法, 包括一步法直接得到α-MoO3纳米片, 以及通过磁控溅射和原子层沉积方法结合后退火工艺实现α-MoO3薄膜的制备. 详细讨论了不同合成方法制得的α-MoO3在存储计算应用中的优势. 对比α-MoO3在阻变存储中的器件性能, 总结α-MoO3基神经突触器件性能及其应用进展. 最后, 结合α-MoO3近期研究进展展望了其在存储计算领域的机会与挑战.
    In recent years, α-MoO3 has received extensive attention in the research of memristor devices. The variation of valence of molybdenum will lead the resistivity to change, and the unique layer structure is beneficial to the implantation of donor ion into free space to adjust the conductance, so that it has a great influence on the study of synaptic transistors. This paper mainly summarize the properties of α-MoO3, the method and characteristics of large-scale two-dimensional α-MoO3 and analyze the recent progress of in-memory computing based on α-MoO3. Primarily, this paper introduces crystal structures, band structure and defect state of α-MoO3. The synthesis methods of large-area α-MoO3 are compared with each other, including the one-step method to directly obtain α-MoO3 nanosheets, and the combined post-annealing process of magnetron sputtering or atomic layer deposition to prepare the thin α-MoO3 films. In the one-step synthesis method we conclude that the chamber pressure influences the ratio of MoO3 to MoO3–x, and the growth temperature affects the ratio of α-MoO3 to β-MoO3. That is to say, the phase composition of molybdenum trioxide, the concentration of precursors has an important influence on the film size. The advantages of α-MoO3 synthesis by different methods in memory computing applications are discussed in detail. And then, this paper summarizes the device performance of α-MoO3 in memristor and the application progress of α-MoO3-based neuromorphic devices, and analyzes the performance of α-MoO3-based resistive random access memory such as switching ratio, endurance, and stability in detail. The synaptic functions of different structural device units are extensively studied, and various typical synapse functions are realized such as short-term plasticity, long-term plasticity, paired pulse facilitation, etc. It shows the excellent characteristics of low energy consumption in the simulation of synaptic plasticity. The use of short-term memory and long-term memory modes of the device can realize the functions of image memory and preprocessing. Through the memristor array combined with the back-propagation network, the high-precision handwriting recognition can be realized. Finally, combining the recent research progress of α-MoO3, its opportunities and challenges in the field of memory computing are prospected.
      通信作者: 王芳, fwang75@163.com ; 张楷亮, kailiang_zhang@163.com
    • 基金项目: 天津市自然科学基金(批准号: 18JCZDJC30500, 17JCYBJC16100, 17JCZDJC31700)、国家自然科学基金(批准号: 61404091, 61274113, 61505144, 51502203, 51502204)、天津市科技计划项目(批准号: 20ZYQCGX00070)、信息功能材料国家重点实验室开放课题(批准号: SKL202007)和国家重点研发计划(批准号: 2017YFB0405600)资助的课题
      Corresponding author: Wang Fang, fwang75@163.com ; Zhang Kai-Liang, kailiang_zhang@163.com
    • Funds: Project supported by the Natural Science Foundation of Tianjin, China (Grant Nos. 18JCZDJC30500, 17JCYBJC16100, 17JCZDJC31700), the National Natural Science Foundation of China (Grant Nos. 61404091, 61274113, 61505144, 51502203, 51502204), the Science and Technology Planning Project of Tianjin, China (Grant No. 20ZYQCGX00070), the Open Project of State Key Laboratory of Functional Materials for Information, China (Grant No. SKL202007), and the National Key Research and Development Program of China (Grant No. 2017YFB0405600)
    [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13Google Scholar

    [2]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [3]

    Ielmini D, Wong H S P 2018 Nat. Electron. 1 333Google Scholar

    [4]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [5]

    张宝军, 王芳, 沈稼强, 单欣, 邸希超, 胡凯, 张楷亮 2020 物理学报 69 048101Google Scholar

    Zhang B J, Wang F, Shen J Q, Shan X, Di X C, Hu K, Zhang K L 2020 Acta Phys. Sin. 69 048101Google Scholar

    [6]

    Hanson E D, Lajaunie L, Hao S, Myers B D, Shi F, Murthy A A, Wolverton C, Arenal R, Dravid V P 2017 Adv. Funct. Mater. 27 1605380Google Scholar

    [7]

    Carcia P F, Mccarron E M 1987 Thin Solid Films 155 53Google Scholar

    [8]

    De Castro I A, Datta R S, Ou J Z, Castellanos-Gomez A, Sriram S, Daeneke T, Kalantar-zadeh K 2017 Adv. Mater. 29 1701619Google Scholar

    [9]

    Yao D D, Ou J Z, Latham K, Zhuiykov S, O’Mullane A P, Kalantar-zadeh K 2012 Cryst. Growth Des. 12 1865Google Scholar

    [10]

    Pan W, Tian R, Jin H, Guo Y, Zhang L, Wu X, Zhang L, Han Z, Liu G, Li J, Rao G, Wang H, Chu W 2010 Chem. Mater. 22 6202Google Scholar

    [11]

    Lei Y H, Chen Z X 2016 Appl. Surf. Sci. 361 107Google Scholar

    [12]

    Inzani K, Grande T, Vullum-Bruer F, Selbach S M 2016 J. Phys. Chem. C 120 8959Google Scholar

    [13]

    Wang Y, Du X, Wang J, Su M, Wan X, Meng H, Xie W, Xu J, Liu P 2017 ACS Appl. Mater. Interfaces 9 5543Google Scholar

    [14]

    Crowley K, Ye G, He R, Abbasi K, Gao X P A 2018 ACS Appl. Nano Mater. 1 6407Google Scholar

    [15]

    Zhang C, Pudasaini P R, Oyedele A D, Ievlev A V, Xu L, Haglund A V, Noh J H, Wong A T, Xiao K, Ward T Z, Mandrus D G, Xu H, Ovchinnikova O S, Rack P D 2018 ACS Appl. Mater. Interfaces 10 22623Google Scholar

    [16]

    Zheng B, Wang Z, Chen Y, Zhang W, Li X 2018 2D Mater. 5 045011Google Scholar

    [17]

    Sun H, Zhang H, Jing X, Hu J, Shen K, Liang Z, Hu J, Tian Q, Luo M, Zhu Z, Jiang Z, Huang H, Song F 2019 Appl. Surf. Sci. 476 789Google Scholar

    [18]

    Arash A, Ahmed T, Rajan A G, Walia S, Rahman F, Mazumder A, Ramanathan R, Sriram S, Bhaskaran M, Mayes E 2019 2D Mater. 6 035031Google Scholar

    [19]

    Kim H U, Son J, Kulkarni A, Ahn C, Kim K S, Shin D, Yeom G Y, Kim T 2017 Nanotechnology 28 175601Google Scholar

    [20]

    Molina-Mendoza A J, Lado J L, Island J O, Niño M A, Aballe L, Foerster M, Bruno F Y, López-Moreno A, Vaquero-Garzon L, van der Zant H S J, Rubio-Bollinger G, Agraït N, Pérez E M, Fernández-Rossier J, Castellanos-Gomez A 2016 Chem. Mater. 28 4042Google Scholar

    [21]

    Wang D, Li J N, Zhou Y, Xu D H, Xiong X, Peng R W, Wang M 2016 Appl. Phys. Lett. 108 053107Google Scholar

    [22]

    Diaz-Droguett D E, Fuenzalida V M 2010 J. Nanosci. Nanotechnol. 10 6694Google Scholar

    [23]

    Cauduro A L F, dos Reis R, Chen G, Schmid A K, Méthivier C, Rubahn H G, Bossard-Giannesini L, Cruguel H, Witkowski N, Madsen M 2017 ACS Appl. Mater. Interfaces 9 7717Google Scholar

    [24]

    Arita M, Kaji H, Fujii T, Takahashi Y 2012 Thin Solid Films 520 4762Google Scholar

    [25]

    George S M 2010 Chem. Rev. 110 111Google Scholar

    [26]

    Leskelä M , Ritala M 2002 Thin Solid Films 1 138Google Scholar

    [27]

    Shi M L, Chen L, Zhang T B, Xu J, Zhu H, Sun Q Q, Zhang D W 2017 Small 13 1603157Google Scholar

    [28]

    Diskus M, Nilsen O, Fjellvåg H 2011 J. Mater. Chem. 21 705Google Scholar

    [29]

    Diskus M, Nilsen O, Fjellvåg H, et al. 2012 J. Vac. Sci. Technol. 30 01A107Google Scholar

    [30]

    Zhou G, Ren Z, Wang L, Sun B, Duan S, Song Q 2019 Mater. Horiz. 6 1877Google Scholar

    [31]

    Zhou G, Wu J, Wang L, et al. 2019 Nanoscale 11 17222Google Scholar

    [32]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H 2019 Nat. Commun. 10 3161Google Scholar

    [33]

    张志超, 王芳, 吴仕剑, 李毅, 弥伟, 赵金石, 张楷亮 2018 物理学报 67 057301Google Scholar

    Zhang Z C, Wang F, Wu S J, Li Y, Mi W, Zhao J S, Zhang K L 2018 Acta Phys. Sin. 67 057301Google Scholar

    [34]

    Du H, Chen J, Tu M, Luo S, Li S, Yuan S, Gong T, Huang W, Jie W, Hao J 2019 J. Mater. Chem. C 7 12160Google Scholar

    [35]

    Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [36]

    Tan Z H, Yin X B, Guo X 2015 Appl. Phys. Lett. 106 023503Google Scholar

    [37]

    Wang J, Wang F, Yin L, Sendeku M G, Zhang Y, Cheng R, Wang Z, Li N, Huang W, He J 2019 Nanoscale 11 20497Google Scholar

    [38]

    Rahman F, Ahmed T, Walia S, Mayes E, Sriram S, Bhaskaran M, Balendhran S 2018 Nanoscale 10 19711Google Scholar

    [39]

    Yang C S, Shang D S, Chai Y S, Yan L Q, Shen B G, Sun Y 2016 Phys. Chem. Chem. Phys. 18 12466Google Scholar

    [40]

    Hasegawa J, Nagase T, Kobayashi T, Naito H 2016 Jpn. J. Appl. Phys. 55 03DC05Google Scholar

    [41]

    Abhijith T, Kumar T V, Reddy V S 2017 Nanotechnology 28 095203Google Scholar

    [42]

    Hsu C C, Wang S Y, Lin Y S, Chen Y T 2019 J. Alloys Compd. 779 609Google Scholar

    [43]

    Fang S L, Liu W H, Li X, Wang X L, Geng L, Wu M S, Huang X D, Han C Y 2019 Appl. Phys. Lett. 115 244102Google Scholar

    [44]

    Dai T, Qian L, Ren Y, Liu X 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC) Hsinchu, Taiwan China, October 18–20, 2017 p1

    [45]

    Xue Q, Wang Y C, Wei X H 2019 Appl. Surf. Sci. 479 469Google Scholar

    [46]

    Kim G H, Lee, J H, Ahn Y, Jeon W, Song S J, Seok J Y, Yoon J H, Yoon K J, Park T J, Hwang C S 2013 Adv. Funct. Mater. 23 1440Google Scholar

    [47]

    Rehman M M, Rehman H M M U, Gul J Z, Kim W Y, Karimov K S, Ahmed N 2020 Sci. Technol. Adv. Mater. 21 147Google Scholar

    [48]

    Wang X, Xie W, Xu J B 2014 Adv. Mater. 26 5496Google Scholar

    [49]

    Yang C S, Shang D S, Chai Y S, Yan L Q, Shen B G, Sun Y 2017 Phys. Chem. Chem. Phys. 19 4190Google Scholar

    [50]

    Wang Z, Yang R, Huang H M, He H K, Shaibo J, Guo X 2020 Adv. Electron. Mater. 6 1901290Google Scholar

    [51]

    Danesh C D, Shaffer C M, Nathan D, Shenoy R, Tudor A, Tadayon M, Lin Y, Chen Y 2019 Adv. Mater. 31 e1808032Google Scholar

    [52]

    Lenz J, Del Giudice F, Geisenhof F R, Winterer F, Weitz R T 2019 Nat. Nanotechnol. 14 579Google Scholar

    [53]

    Nie S, He Y, Liu R, Shi Y, Wan Q 2019 IEEE Electron Device Lett. 40 459Google Scholar

    [54]

    Chernova N A, Roppolo M, Dillon A C, Whittingham M S 2009 J. Mater. Chem. 19 2526Google Scholar

    [55]

    李琦, 章勇 2018 物理学报 67 067201Google Scholar

    Li Q, Zhang Y 2018 Acta Phys. Sin. 67 067201Google Scholar

    [56]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906Google Scholar

    [57]

    Yang C S, Shang D S, Liu N, et al. 2018 Adv. Funct. Mater. 28 1804170Google Scholar

    [58]

    He Y, Nie S, Liu R, Jiang S, Shi Y, Wan Q 2019 Adv. Mater. 31 e1900903Google Scholar

    [59]

    Guo L, Wen J, Ding J, Wan C, Cheng G 2016 Sci. Rep. 6 38578Google Scholar

    [60]

    Hu W, Jiang J, Xie D, Liu B, Yang J, He J 2019 J. Mater. Chem. C 7 682Google Scholar

    [61]

    Shao L, Wang H, Yang Y, et al. 2019 ACS Appl. Mater. Interfaces 11 12161Google Scholar

    [62]

    Wang K, Dai S, Zhao Y, Wang Y, Liu C, Huang J 2019 Small 15 e1900010Google Scholar

  • 图 1  (a) α-MoO3晶体结构; (b) β-MoO3晶体结构; (c) h-MoO3晶体结构

    Fig. 1.  (a) Crystal structure of α-MoO3; (b) crystal structure of β-MoO3; (c) crystal structure of h-MoO3.

    图 2  (a) 块体电子结构[6]; (b) 单层电子结构[6]

    Fig. 2.  (a) Bulk electronic structure[6]; (b) monolayer electronic structure[6].

    图 3  (a) 在化学计量比情况下MoO3能带结构[12]; (b) 在O1空位情况下MoO3能带结构[12]; (c) 在O2 空位情况下MoO3能带结构[12]; (d) 在O3空位情况下MoO3能带结构[12]

    Fig. 3.  (a) Band structures of MoO3 in the stoichiometric case[12]; (b) band structures of MoO3 in the vacancy on O1 case[12]; (c) band structures of MoO3 in the vacancy on O2 case[12]; (d) band structures of MoO3 in the vacancy on O3 case[12].

    图 4  (a) 在两温区的物理气相沉积系统中合成α-MoO3原理图[13]; (b) 在SiO2/Si衬底上生长的α-MoO3单晶的照片[16]; (c) α-MoO3的HRTEM图像, 内嵌图为相应的透射电子显微镜图像和傅里叶变换图像[16]; (d) 生长α-MoO3的O 1s和Mo 3d的高分辨XPS能谱[16]

    Fig. 4.  (a) Schematic illustration of synthesis of α-MoO3 in a two-temperature-zone PVD system[13]; (b) photograph of as-grown α-MoO3 single crystals on SiO2/Si substrate[16]; (c) HRTEM image of the α-MoO3 sheet. Insets: corresponding TEM and FFT images[16]; (d) high-resolution XPS spectra of O 1s and Mo 3d of as-grown α-MoO3[16].

    图 5  在不同温度下氧化的Mo薄膜的XRD图谱[24]

    Fig. 5.  XRD patterns of Mo films oxidized at various temperatures[24].

    图 6  (a) 采用ALD合成MoO3薄膜的一个循环的工艺原理图[27]; (b) 采用ALD在Al2O3上沉积得到的40 nm MoO3薄膜的拉曼光谱: a)沉积和空气中退火, b) 400 ℃退火8 min, c) 600 ℃退火4 min, d) 600 ℃退火7.5 min[29]

    Fig. 6.  (a) Schematic of one cycle ALD process for MoO3 film[27]; (b) Raman spectra of 40 nm thin films of MoO3 deposited on Al2O3 by ALD: a) as deposited, and annealed in air; b) 8 min at 400 ℃; c) 4 min at 600 ℃; d) 7.5 min at 600 ℃[29].

    图 7  (a) 单极电阻开关的代表性行为, 横向面积为2 μm × 2 μm的α-MoO3横杆三明治器件中的I-V曲线, 内嵌图显示了Au/Cr/α-MoO3/Au横杆夹层结构的相应光学图像, 刻度线代表5 μm[37]; (b) α-MoO3横杆器件开关在室温下具有稳定的保持性; 在0.01 V的小偏置下, 通过测量电流来确定HRS和LRS[37]; (c) 存储器单元在重复开关周期下的特性电流-电压曲线[38]; (d) 开关周期的耐久性(读取电压为500 mV时获得的电阻值), 内嵌图为耐久性测量过程中的电压脉冲序列, 每个脉冲的持续时间为2 ms[38]

    Fig. 7.  (a) Representative I-V curves of unipolar resistive switching behavior in the α-MoO3 crossbar sandwich device with a lateral area of 2 μm × 2 μm. The inset shows the corresponding optical image of Au/Cr/α-MoO3/Au crossbar sandwich structures and the scale bar represents 5 μm[37]. (b) Time-dependent measurements of α-MoO3 crossbar device switch featuring stable retention at room temperature. The resistance of the HRS and LRS is determined by measuring the current at a small bias of 0.01 V[37]. (c) Characteristic current-voltage curves of a memory cell subjected to repetitive switching cycles[38]. (d) Performance endurance with respect to number of switching cycles (Resistance values obtained at a read voltage of 500 mV). The inset shows the voltage pulse train during endurance measurement with duration of 2 ms of each pulse[38].

    图 8  (a) MoOx RRAMs的电流-电压特性[42]; (b) MoOx RRAMs的耐久性[42]

    Fig. 8.  (a) Current-voltage characteristics of the MoOx RRAMs[42]; (b) endurance characteristics of the MoOx RRAMs[42].

    图 9  (a) 垂直器件结构示意图及测试说明[45]; (b) 负电压I-V曲线[45]; (c) 正电压I-V曲线; 内嵌图为 ± 0.25 V读电压下随周期的增加, 电流的变化[45]; (d) 由施加的10个不同电压和宽度的脉冲所表示的STM和LTM[50]; (e) 电导在第一个像素内的变化, 蓝色虚线表示对于一个给定字母, 输入最后一个脉冲后的读出时间[50]; (f), (g), (h)在STM模式下(e)图中蓝线标记的时刻所记忆的字母“x”和“z”, 而字母“y”是在LTM模式下被记忆[50]

    Fig. 9.  (a) Schematic illustration of vertical device structure and measurement; (b) I-V curves of negative voltage[45]; (c) I-V curves of positive voltage, the insets show the variation of the current read at ±0.25 V with increasing cycle[45]; (d) STM and LTM demonstrated by applying 10 pulses with different amplitudes and widths[50]; (e) conductance change at the first pixel; the blue dashed lines indicate the read-out moment after inputting the last pulse for a given letter[50]; (f), (g), (h) images memorized at the moments marked by blue lines in (e) letters “x” and “z” are memorized in the STM mode, while the letter “y” is memorized in the LTM mode[50].

    图 10  (a) 生物突触示意图[56]; (b) 三端突触晶体管结构原理图[56]; (c) 由电压编程锂离子突触晶体管crossbar阵列和接入器件组成的突触权重层示意图[57]; (d) 对于8 × 8像素手写数字图像, 其识别精度随训练epochs的变化[57]

    Fig. 10.  (a) Schematic illustration of a biological synapse[56]; (b) schematic diagram of the three-terminal synaptic transistor[56]; (c) schematics of a synaptic weight layer composed of voltage programmed Li-ion synaptic transistor crossbar array and access devices[57]; (d) the recognition accuracy evolution with training epochs for 8 × 8 pixel handwritten digit image[57].

    图 11  (a) 8 × 8 ORRAM阵列原理图[35]; (b) 带有ORRAM阵列的三层人工神经网络连接结构[35]; (c) 经ORRAM阵列预处理前(左列)和后(右列)的图像示例[35]; (d) 有无ORRAM阵列图像预处理情况下图像识别率的对比[35]

    Fig. 11.  (a) Schematic structure of an 8 × 8 ORRAM array[35]; (b) structure of the three-layered artificial neural network with ORRAM[35]; (c) examples of images before (left columns) and after (right columns) ORRAM-based pre-processing[35]; (d) comparisons of the image recognition rate with and without ORRAM-based image preprocessing[35].

    表 1  一步法制备α-MoO3的生长条件(1 Torr = 1.33322 × 102 Pa)

    Table 1.  Growth conditions of α-MoO3 prepared by one-step method.

    Ref.Carrier flowPressureSubstrate temperature/℃Growth time/minLateral sizeThickness/nm
    [13]Atmospheric58012069.6 μm5.3—89.8
    [16]Atmospheric850—1050300.72 cm
    [17]ArAtmospheric75020Centimeters scale4.3—550
    [18]Ar310 mTorr53045500 µm × 500 µm8 ± 0.75
    [19]Ar & O2100 mTorr15090Wafer-scale30
    [20]Atmospheric54020Centimeters scale≥ 1.4
    [21]N2Atmospheric350—48020Several tens micron2.8—14
    下载: 导出CSV

    表 2  三氧化钼基忆阻器件性能对比

    Table 2.  Comparison of performance of molybdenum trioxide memristors.

    Ref.Ron/RoffEndurenceVforming/VVset/VVreset/VRetention/sCompliance/mA
    [24]10—102601.8—31—20.5—12—5
    [36]103–2.21.73.310310-3
    [37]> 105503.2—4.13—3.94.45—5.910450
    [38]103> 6000–2.7–22.5> 1040.8
    [39]1824.51.8–1.13.6 × 1031
    [40]~3501—32.6 × 106
    [41]1.15 × 1037484.5 × 103
    [42]1.6 × 102500–33
    [43]106> 1000.8–0.2—1.62 × 104102
    [44]202.2–1.11.4 × 1030.1
    [45]Free0.4–10.1
    下载: 导出CSV

    表 3  突触晶体管性能对比

    Table 3.  Performance comparison of synaptic transistors.

    Ref.Channel materialElectrolyteOperation votage/VPulse width/ msEnergy consumption
    [56]α-MoO3EMIM(CF3SO2)2N2.519.6 pJ
    [57]α-MoO3LiClO4/PEO2.51≈0.16 pJ
    [58]IGZOChitosan2251.0 nJ
    [59]IZOMethyl cellulose0.2—115—6016 nJ
    [60]MoS2chitosan1.5105 pJ
    下载: 导出CSV
  • [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13Google Scholar

    [2]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [3]

    Ielmini D, Wong H S P 2018 Nat. Electron. 1 333Google Scholar

    [4]

    Liu Y, Huang Y, Duan X 2019 Nature 567 323Google Scholar

    [5]

    张宝军, 王芳, 沈稼强, 单欣, 邸希超, 胡凯, 张楷亮 2020 物理学报 69 048101Google Scholar

    Zhang B J, Wang F, Shen J Q, Shan X, Di X C, Hu K, Zhang K L 2020 Acta Phys. Sin. 69 048101Google Scholar

    [6]

    Hanson E D, Lajaunie L, Hao S, Myers B D, Shi F, Murthy A A, Wolverton C, Arenal R, Dravid V P 2017 Adv. Funct. Mater. 27 1605380Google Scholar

    [7]

    Carcia P F, Mccarron E M 1987 Thin Solid Films 155 53Google Scholar

    [8]

    De Castro I A, Datta R S, Ou J Z, Castellanos-Gomez A, Sriram S, Daeneke T, Kalantar-zadeh K 2017 Adv. Mater. 29 1701619Google Scholar

    [9]

    Yao D D, Ou J Z, Latham K, Zhuiykov S, O’Mullane A P, Kalantar-zadeh K 2012 Cryst. Growth Des. 12 1865Google Scholar

    [10]

    Pan W, Tian R, Jin H, Guo Y, Zhang L, Wu X, Zhang L, Han Z, Liu G, Li J, Rao G, Wang H, Chu W 2010 Chem. Mater. 22 6202Google Scholar

    [11]

    Lei Y H, Chen Z X 2016 Appl. Surf. Sci. 361 107Google Scholar

    [12]

    Inzani K, Grande T, Vullum-Bruer F, Selbach S M 2016 J. Phys. Chem. C 120 8959Google Scholar

    [13]

    Wang Y, Du X, Wang J, Su M, Wan X, Meng H, Xie W, Xu J, Liu P 2017 ACS Appl. Mater. Interfaces 9 5543Google Scholar

    [14]

    Crowley K, Ye G, He R, Abbasi K, Gao X P A 2018 ACS Appl. Nano Mater. 1 6407Google Scholar

    [15]

    Zhang C, Pudasaini P R, Oyedele A D, Ievlev A V, Xu L, Haglund A V, Noh J H, Wong A T, Xiao K, Ward T Z, Mandrus D G, Xu H, Ovchinnikova O S, Rack P D 2018 ACS Appl. Mater. Interfaces 10 22623Google Scholar

    [16]

    Zheng B, Wang Z, Chen Y, Zhang W, Li X 2018 2D Mater. 5 045011Google Scholar

    [17]

    Sun H, Zhang H, Jing X, Hu J, Shen K, Liang Z, Hu J, Tian Q, Luo M, Zhu Z, Jiang Z, Huang H, Song F 2019 Appl. Surf. Sci. 476 789Google Scholar

    [18]

    Arash A, Ahmed T, Rajan A G, Walia S, Rahman F, Mazumder A, Ramanathan R, Sriram S, Bhaskaran M, Mayes E 2019 2D Mater. 6 035031Google Scholar

    [19]

    Kim H U, Son J, Kulkarni A, Ahn C, Kim K S, Shin D, Yeom G Y, Kim T 2017 Nanotechnology 28 175601Google Scholar

    [20]

    Molina-Mendoza A J, Lado J L, Island J O, Niño M A, Aballe L, Foerster M, Bruno F Y, López-Moreno A, Vaquero-Garzon L, van der Zant H S J, Rubio-Bollinger G, Agraït N, Pérez E M, Fernández-Rossier J, Castellanos-Gomez A 2016 Chem. Mater. 28 4042Google Scholar

    [21]

    Wang D, Li J N, Zhou Y, Xu D H, Xiong X, Peng R W, Wang M 2016 Appl. Phys. Lett. 108 053107Google Scholar

    [22]

    Diaz-Droguett D E, Fuenzalida V M 2010 J. Nanosci. Nanotechnol. 10 6694Google Scholar

    [23]

    Cauduro A L F, dos Reis R, Chen G, Schmid A K, Méthivier C, Rubahn H G, Bossard-Giannesini L, Cruguel H, Witkowski N, Madsen M 2017 ACS Appl. Mater. Interfaces 9 7717Google Scholar

    [24]

    Arita M, Kaji H, Fujii T, Takahashi Y 2012 Thin Solid Films 520 4762Google Scholar

    [25]

    George S M 2010 Chem. Rev. 110 111Google Scholar

    [26]

    Leskelä M , Ritala M 2002 Thin Solid Films 1 138Google Scholar

    [27]

    Shi M L, Chen L, Zhang T B, Xu J, Zhu H, Sun Q Q, Zhang D W 2017 Small 13 1603157Google Scholar

    [28]

    Diskus M, Nilsen O, Fjellvåg H 2011 J. Mater. Chem. 21 705Google Scholar

    [29]

    Diskus M, Nilsen O, Fjellvåg H, et al. 2012 J. Vac. Sci. Technol. 30 01A107Google Scholar

    [30]

    Zhou G, Ren Z, Wang L, Sun B, Duan S, Song Q 2019 Mater. Horiz. 6 1877Google Scholar

    [31]

    Zhou G, Wu J, Wang L, et al. 2019 Nanoscale 11 17222Google Scholar

    [32]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J, Kong B S, Zhao R, Yang H 2019 Nat. Commun. 10 3161Google Scholar

    [33]

    张志超, 王芳, 吴仕剑, 李毅, 弥伟, 赵金石, 张楷亮 2018 物理学报 67 057301Google Scholar

    Zhang Z C, Wang F, Wu S J, Li Y, Mi W, Zhao J S, Zhang K L 2018 Acta Phys. Sin. 67 057301Google Scholar

    [34]

    Du H, Chen J, Tu M, Luo S, Li S, Yuan S, Gong T, Huang W, Jie W, Hao J 2019 J. Mater. Chem. C 7 12160Google Scholar

    [35]

    Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [36]

    Tan Z H, Yin X B, Guo X 2015 Appl. Phys. Lett. 106 023503Google Scholar

    [37]

    Wang J, Wang F, Yin L, Sendeku M G, Zhang Y, Cheng R, Wang Z, Li N, Huang W, He J 2019 Nanoscale 11 20497Google Scholar

    [38]

    Rahman F, Ahmed T, Walia S, Mayes E, Sriram S, Bhaskaran M, Balendhran S 2018 Nanoscale 10 19711Google Scholar

    [39]

    Yang C S, Shang D S, Chai Y S, Yan L Q, Shen B G, Sun Y 2016 Phys. Chem. Chem. Phys. 18 12466Google Scholar

    [40]

    Hasegawa J, Nagase T, Kobayashi T, Naito H 2016 Jpn. J. Appl. Phys. 55 03DC05Google Scholar

    [41]

    Abhijith T, Kumar T V, Reddy V S 2017 Nanotechnology 28 095203Google Scholar

    [42]

    Hsu C C, Wang S Y, Lin Y S, Chen Y T 2019 J. Alloys Compd. 779 609Google Scholar

    [43]

    Fang S L, Liu W H, Li X, Wang X L, Geng L, Wu M S, Huang X D, Han C Y 2019 Appl. Phys. Lett. 115 244102Google Scholar

    [44]

    Dai T, Qian L, Ren Y, Liu X 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC) Hsinchu, Taiwan China, October 18–20, 2017 p1

    [45]

    Xue Q, Wang Y C, Wei X H 2019 Appl. Surf. Sci. 479 469Google Scholar

    [46]

    Kim G H, Lee, J H, Ahn Y, Jeon W, Song S J, Seok J Y, Yoon J H, Yoon K J, Park T J, Hwang C S 2013 Adv. Funct. Mater. 23 1440Google Scholar

    [47]

    Rehman M M, Rehman H M M U, Gul J Z, Kim W Y, Karimov K S, Ahmed N 2020 Sci. Technol. Adv. Mater. 21 147Google Scholar

    [48]

    Wang X, Xie W, Xu J B 2014 Adv. Mater. 26 5496Google Scholar

    [49]

    Yang C S, Shang D S, Chai Y S, Yan L Q, Shen B G, Sun Y 2017 Phys. Chem. Chem. Phys. 19 4190Google Scholar

    [50]

    Wang Z, Yang R, Huang H M, He H K, Shaibo J, Guo X 2020 Adv. Electron. Mater. 6 1901290Google Scholar

    [51]

    Danesh C D, Shaffer C M, Nathan D, Shenoy R, Tudor A, Tadayon M, Lin Y, Chen Y 2019 Adv. Mater. 31 e1808032Google Scholar

    [52]

    Lenz J, Del Giudice F, Geisenhof F R, Winterer F, Weitz R T 2019 Nat. Nanotechnol. 14 579Google Scholar

    [53]

    Nie S, He Y, Liu R, Shi Y, Wan Q 2019 IEEE Electron Device Lett. 40 459Google Scholar

    [54]

    Chernova N A, Roppolo M, Dillon A C, Whittingham M S 2009 J. Mater. Chem. 19 2526Google Scholar

    [55]

    李琦, 章勇 2018 物理学报 67 067201Google Scholar

    Li Q, Zhang Y 2018 Acta Phys. Sin. 67 067201Google Scholar

    [56]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906Google Scholar

    [57]

    Yang C S, Shang D S, Liu N, et al. 2018 Adv. Funct. Mater. 28 1804170Google Scholar

    [58]

    He Y, Nie S, Liu R, Jiang S, Shi Y, Wan Q 2019 Adv. Mater. 31 e1900903Google Scholar

    [59]

    Guo L, Wen J, Ding J, Wan C, Cheng G 2016 Sci. Rep. 6 38578Google Scholar

    [60]

    Hu W, Jiang J, Xie D, Liu B, Yang J, He J 2019 J. Mater. Chem. C 7 682Google Scholar

    [61]

    Shao L, Wang H, Yang Y, et al. 2019 ACS Appl. Mater. Interfaces 11 12161Google Scholar

    [62]

    Wang K, Dai S, Zhao Y, Wang Y, Liu C, Huang J 2019 Small 15 e1900010Google Scholar

  • [1] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [2] 毕文杰, 杨爽, 周静, 金伟, 陈文. Cu3Mo2O9/MoO3纳米复合材料制备及三甲胺气敏性能研究. 物理学报, 2023, 72(16): 168103. doi: 10.7498/aps.72.20230720
    [3] 朱佳雪, 张续猛, 王睿, 刘琦. 面向神经形态感知和计算的柔性忆阻器基脉冲神经元. 物理学报, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [4] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [5] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞. 光电神经形态器件及其应用. 物理学报, 2022, 71(14): 148505. doi: 10.7498/aps.71.20220111
    [6] 陈阳洋, 何毓辉, 缪向水, 杨道虹. 基于3D-NAND的神经形态计算. 物理学报, 2022, 71(21): 210702. doi: 10.7498/aps.71.20220974
    [7] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [8] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [9] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [10] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇. 基于忆容器件的神经形态计算研究进展. 物理学报, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [11] 魏晨崴, 曹暾. 基于α-MoO3的可调谐法布里-珀罗谐振腔比色生物传感器. 物理学报, 2021, 70(4): 048701. doi: 10.7498/aps.70.20201548
    [12] 高博文, 孟婧. 全喷墨打印的大面积柔性CH3NH3PbI3钙钛矿太阳能电池. 物理学报, 2021, 70(20): 208801. doi: 10.7498/aps.70.20210788
    [13] 李瑞东, 邓金祥, 张浩, 徐智洋, 潘志伟, 孙俊杰, 王贵生. Rubrene∶MoO3混合薄膜的制备及光学和电学性质. 物理学报, 2019, 68(17): 178101. doi: 10.7498/aps.68.20190035
    [14] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [15] 游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林. 蓝宝石基片上制备大面积Tl2Ba2CaCu2O8超导薄膜. 物理学报, 2010, 59(7): 5035-5043. doi: 10.7498/aps.59.5035
    [16] 蔡亚平, 李卫, 冯良桓, 黎兵, 蔡伟, 雷智, 张静全, 武莉莉, 郑家贵. 化学水浴法制备大面积CdS薄膜及其光伏应用. 物理学报, 2009, 58(1): 438-443. doi: 10.7498/aps.58.438
    [17] 海阔, 唐东升, 袁华军, 彭跃华, 罗志华, 刘红霞, 陈亚琦, 余芳, 羊亿. 大面积α-Fe2O3纳米线及纳米带阵列的制备研究. 物理学报, 2009, 58(2): 1120-1125. doi: 10.7498/aps.58.1120
    [18] 张宏俊, 王 栋, 陈志权, 王少阶, 徐友明, 罗锡辉. MoO3/Al2O3催化剂中Mo分散的正电子研究. 物理学报, 2008, 57(11): 7333-7337. doi: 10.7498/aps.57.7333
    [19] 伞海生, 陈 冲, 何毓阳, 王 君, 冯博学. n型透明导电薄膜CdIn2O4电学性质的研究和大面积制备的最佳条件. 物理学报, 2005, 54(4): 1736-1741. doi: 10.7498/aps.54.1736
    [20] 欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程. 电流型大面积PIN探测器. 物理学报, 2002, 51(7): 1502-1505. doi: 10.7498/aps.51.1502
计量
  • 文章访问数:  11213
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-31
  • 修回日期:  2020-12-09
  • 上网日期:  2021-04-22
  • 刊出日期:  2021-05-05

/

返回文章
返回