-
La(Fe, Si)13-based alloys have attracted more and more attention, for they exhibit giant magnetocaloric effects. In order to broaden their magnetic refrigeration temperatureranges, achieving a series of La(Fe, Si)13-based alloys with different magnetic phase transition temperatures is of great significance. Unlike the traditional research method, in this paper, a high-throughput first-principles computation is performed to estimate the magnetic phase transition temperature of the LaFe11.5Si1.5-based alloy by employing AMS-BAND software and the mean field theory. We investigate the effects of doping Mn, Co, Ni, Al atoms and Fe-vacancies on the magnetic phase transition temperature of LaFe11.5Si1.5-based alloy, and give the phase diagrams between the composition and magnetic phase transition temperature. The calculated results demonstrate that the magnetic phase transition temperature of the LaFe11.5Si1.5-based alloy increases with the increase of Co and Ni content. However, it shows an opposite result when Mn atom is doped. As for the LaFe11.5Si1.5-based alloy with the Fe-vacancies, the research results indicate that the absence of Fe atoms will reduce the magnetic phase transition temperature. Furthermore, when Mn, Co, Ni and Al atoms are doped in the alloys with Fe-vacancies, the variation tendency of the magnetic phase transition temperature with the change of the doping content is similar to that without the Fe-vacancies. Some estimated results are compared with the experimental or reported results, showing that they are in good agreement with each other. The PDOS and the magnetic moments of Fe atoms in the Mn, Co, Ni, Al-doped LaFe11.5Si1.5-based alloys are calculated, in which only the doping of Mn atoms can increase the magnetic moments of Fe atoms. Using the method of high-throughput first-principles calculation can effectively reduce the research cost and improve the working efficiency. In addition, it can provide technical support for the experimental selection of magnetocaloric materials with appropriate magnetic phase transition temperatures.
-
Keywords:
- high throughput calculation /
- magnetic refrigeration /
- magnetic phase transition temperature /
- the first principles
[1] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502Google Scholar
Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar
[2] Brown G V 1976 J. Appl. Phys. 47 3673Google Scholar
[3] Wang D H, Huang S L, Han Z D, Cao Q Q, Su Z H, Zou W Q, Du Y W 2004 J. Alloys Compd. 377 72Google Scholar
[4] Wang D H, Huang S L, Han Z D, Su Z H, Wang Y, Du Y W 2004 Solid State Commun. 131 97Google Scholar
[5] 朱泓源, 夏宁, 黄立婷, 程娟, 张英德, 金培育, 张成, 黄焦宏 2019 稀土 2 63Google Scholar
Zhu H Y, Xia N, Huang L T, Cheng J, Zhang Y D, Jin P Y, Zhang C, Huang J H 2019 Chin. Rare Earth. 2 63Google Scholar
[6] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar
[7] Pecharsky V K, Gschneidner Jr K A 1999 Appl. Phys. 86 6315Google Scholar
[8] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar
[9] Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar
[10] Tegus O, Brück E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar
[11] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar
[12] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506Google Scholar
[13] 刘恩克, 王文洪, 张宏伟, 吴光恒 2012 中国材料进展 31 13Google Scholar
Liu E K, Wang W H, Zhang H W, Wu G H 2012 Mater. Chin. 31 13Google Scholar
[14] 黄辉, 张龙, 刘煜, 刘合心 2010 制冷与空调 3 70Google Scholar
Huang H, Zhang L, Liu Y, Liu H X 2010 Refrigeration and Air-Conditioning 3 70Google Scholar
[15] Jacobs S, Auringer J, Boeder A 2014 Int. J. Refrig. 37 84Google Scholar
[16] Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14Google Scholar
[17] Barcza A, Katter M, Zellmann V, Russek S, Jacobs S, Zimm C 2011 IEEE Trans. Magn. 47 10Google Scholar
[18] 胡凤霞, 沈保根, 孙继荣, 王光军, 成昭华 2002 物理 31 139Google Scholar
Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Physics 31 139Google Scholar
[19] Moreno R L M, Romero M C, Law J Y, Franco V, Conde A, Radulovc A I, Maccaric F, Skokov K P, Gutfleisch O 2018 Acta Mater. 160 137Google Scholar
[20] 沈俊 2008 博士学位论文 (天津: 河北工业大学)
Shen J 2008 Ph. D. Dissertation (Tianjin: Hebei University of Technology) (in Chinese)
[21] Chang H, Chen N X, Liang J K, Rao G H 2003 J. Phys. :Condens. Matter 15 109Google Scholar
[22] Beth S M 1971 Phys. Rev. B 4 4081Google Scholar
[23] Beth S M 1972 Phys. Rev. B 6 3326Google Scholar
[24] Beth S M 1973 Phys. Rev. B 8 4383Google Scholar
[25] Beth S M 1976 Phys. Rev. B 13 1183Google Scholar
[26] Beth S M 1978 J. Appl. Phys. 49 1555Google Scholar
[27] Beth S M 1978 Phys. Rev. B 17 2809Google Scholar
[28] Shick A B, Pickett W E, Fadley C S 2000 Phys. Rev. B 61 9213Google Scholar
[29] Tribhuwan P, David S P 2018 Phys. Rev. Appl. 10 034038Google Scholar
[30] Wiesenekker G, Baerends E J 1991 J. Phys.: Condens. Matter 3 6721Google Scholar
[31] te Velde G, Baerends E J 1991 Phys. Rev. B 44 7888Google Scholar
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[33] Boutahar A, Phejar M, Paul-Boncour V, Bessais L, Lassri H 2014 J. Supercond. Nov. Magn. 27 1795Google Scholar
[34] Chen Y F, Wang F, Shen B G, Sun J R, Wang G J, Hu F X, Cheng Z H, Zhu T 2003 J. Appl. Phys. 93 6981Google Scholar
[35] Talakesh S, Nourbakhsh Z 2019 Indian. J. Phys. 93 571Google Scholar
[36] Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804Google Scholar
[37] Hu J, Guan L, Fu S, Sun Y Y, Long Y 2014 J. Magn. Magn. Mater. 354 336Google Scholar
[38] Sun S, Ye R C, Long Y 2013 Mater. Sci. Eng. B 178 60Google Scholar
[39] 胡义嘎, 松林, 王高峰, 李富安, 特古斯 2011 稀有金属 35 877Google Scholar
Hu Y G, Song L, Wang G F, Li F A, Tegus O 2011 Chin. J. Rare Mater. 35 877Google Scholar
[40] Dai H Y, Wang M M, Li T, Liu D W, Yang Y, Chen Z P 2021 Ceram. Int. 47 15139Google Scholar
-
图 3 合金体系相变温度相图 (a) LaFe11.5–x–yMnxCoySi1.5; (b) LaFe11.5–x–yMnxAlySi1.5; (c) LaFe11.5–x–yMnxNiySi1.5; (d) LaFe11.375–x–yMnxNiyCo0.125Si1.5
Fig. 3. The phase diagrams of phase transition temperature: (a) LaFe11.5–x-yMnxCoySi1.5; (b) LaFe11.5–x–yMnxAlySi1.5; (c) LaFe11.5–x–yMnxNiySi1.5; (d) LaFe11.375–x–yMnxNiyCo0.125Si1.5 alloys.
图 4 合金体系相变温度相图 (a) LaFe11.375–x–yMnxNi ySi1.5; (b) LaFe11.375–x–yMnxCoySi1.5; (c) LaFe11.25–x–yMnxNiyCo0.125Si1.5; (d) LaFe11.25–x–yMnxCoyNi0.125Si1.5
Fig. 4. The phase diagrams of phase transition temperature: (a) LaFe11.375–x–yMnxNi ySi1.5; (b) LaFe11.375–x–yMnxCoySi1.5; (c) LaFe11.25–x–yMnxNiyCo0.125Si1.5; (d) LaFe11.25–x–yMnxCoyNi0.125Si1.5 alloys.
-
[1] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502Google Scholar
Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502Google Scholar
[2] Brown G V 1976 J. Appl. Phys. 47 3673Google Scholar
[3] Wang D H, Huang S L, Han Z D, Cao Q Q, Su Z H, Zou W Q, Du Y W 2004 J. Alloys Compd. 377 72Google Scholar
[4] Wang D H, Huang S L, Han Z D, Su Z H, Wang Y, Du Y W 2004 Solid State Commun. 131 97Google Scholar
[5] 朱泓源, 夏宁, 黄立婷, 程娟, 张英德, 金培育, 张成, 黄焦宏 2019 稀土 2 63Google Scholar
Zhu H Y, Xia N, Huang L T, Cheng J, Zhang Y D, Jin P Y, Zhang C, Huang J H 2019 Chin. Rare Earth. 2 63Google Scholar
[6] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar
[7] Pecharsky V K, Gschneidner Jr K A 1999 Appl. Phys. 86 6315Google Scholar
[8] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar
[9] Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545Google Scholar
[10] Tegus O, Brück E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar
[11] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Manosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar
[12] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506Google Scholar
[13] 刘恩克, 王文洪, 张宏伟, 吴光恒 2012 中国材料进展 31 13Google Scholar
Liu E K, Wang W H, Zhang H W, Wu G H 2012 Mater. Chin. 31 13Google Scholar
[14] 黄辉, 张龙, 刘煜, 刘合心 2010 制冷与空调 3 70Google Scholar
Huang H, Zhang L, Liu Y, Liu H X 2010 Refrigeration and Air-Conditioning 3 70Google Scholar
[15] Jacobs S, Auringer J, Boeder A 2014 Int. J. Refrig. 37 84Google Scholar
[16] Eriksen D, Engelbrecht K, Bahl C R H, Bjørk R, Nielsen K K, Insinga A R 2015 Int. J. Refrig. 58 14Google Scholar
[17] Barcza A, Katter M, Zellmann V, Russek S, Jacobs S, Zimm C 2011 IEEE Trans. Magn. 47 10Google Scholar
[18] 胡凤霞, 沈保根, 孙继荣, 王光军, 成昭华 2002 物理 31 139Google Scholar
Hu F X, Shen B G, Sun J R, Wang G J, Cheng Z H 2002 Physics 31 139Google Scholar
[19] Moreno R L M, Romero M C, Law J Y, Franco V, Conde A, Radulovc A I, Maccaric F, Skokov K P, Gutfleisch O 2018 Acta Mater. 160 137Google Scholar
[20] 沈俊 2008 博士学位论文 (天津: 河北工业大学)
Shen J 2008 Ph. D. Dissertation (Tianjin: Hebei University of Technology) (in Chinese)
[21] Chang H, Chen N X, Liang J K, Rao G H 2003 J. Phys. :Condens. Matter 15 109Google Scholar
[22] Beth S M 1971 Phys. Rev. B 4 4081Google Scholar
[23] Beth S M 1972 Phys. Rev. B 6 3326Google Scholar
[24] Beth S M 1973 Phys. Rev. B 8 4383Google Scholar
[25] Beth S M 1976 Phys. Rev. B 13 1183Google Scholar
[26] Beth S M 1978 J. Appl. Phys. 49 1555Google Scholar
[27] Beth S M 1978 Phys. Rev. B 17 2809Google Scholar
[28] Shick A B, Pickett W E, Fadley C S 2000 Phys. Rev. B 61 9213Google Scholar
[29] Tribhuwan P, David S P 2018 Phys. Rev. Appl. 10 034038Google Scholar
[30] Wiesenekker G, Baerends E J 1991 J. Phys.: Condens. Matter 3 6721Google Scholar
[31] te Velde G, Baerends E J 1991 Phys. Rev. B 44 7888Google Scholar
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[33] Boutahar A, Phejar M, Paul-Boncour V, Bessais L, Lassri H 2014 J. Supercond. Nov. Magn. 27 1795Google Scholar
[34] Chen Y F, Wang F, Shen B G, Sun J R, Wang G J, Hu F X, Cheng Z H, Zhu T 2003 J. Appl. Phys. 93 6981Google Scholar
[35] Talakesh S, Nourbakhsh Z 2019 Indian. J. Phys. 93 571Google Scholar
[36] Jia L, Sun J R, Shen J, Gao B, Zhao T Y, Zhang H W, Hu F X, Shen B G 2011 J. Alloys Compd. 509 5804Google Scholar
[37] Hu J, Guan L, Fu S, Sun Y Y, Long Y 2014 J. Magn. Magn. Mater. 354 336Google Scholar
[38] Sun S, Ye R C, Long Y 2013 Mater. Sci. Eng. B 178 60Google Scholar
[39] 胡义嘎, 松林, 王高峰, 李富安, 特古斯 2011 稀有金属 35 877Google Scholar
Hu Y G, Song L, Wang G F, Li F A, Tegus O 2011 Chin. J. Rare Mater. 35 877Google Scholar
[40] Dai H Y, Wang M M, Li T, Liu D W, Yang Y, Chen Z P 2021 Ceram. Int. 47 15139Google Scholar
计量
- 文章访问数: 5758
- PDF下载量: 167
- 被引次数: 0