搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系

赵茜 陈敬 彭腾 刘俊宏 汪波 陈晓莉 熊祖洪

引用本文:
Citation:

激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系

赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪

Non-monotonic current dependence of intersystem crossing and reverse intersystem crossing processes in exciplex-based organic light-emitting diodes

Zhao Xi, Chen Jing, Peng Teng, Liu Jun-Hong, Wang Bo, Chen Xiao-Li, Xiong Zu-Hong
PDF
HTML
导出引用
  • 激基复合物有机发光二极管(exciplex-based organic light-emitting diodes, EB-OLEDs)中自旋对态(spin-pair states)的系间窜越(intersystem crossing, ISC)和反向系间窜越(reverse ISC, RISC)是重要的自旋混合过程. 它们通常展示正常的电流依赖关系, 即随电流的增大而减弱. 本文利用磁电致发光(magneto-electroluminescence, MEL)作为指纹式探测工具, 在具有不同电荷平衡的EB-OLEDs中观察到多种电流依赖的ISC和RISC过程. 它们有趣的表现为: 随着器件注入电流增大, 非平衡器件中电流依赖的MEL曲线呈现从正常ISC (1—25 μA)向反常ISC (25—200 μA)过程的转换, 而平衡器件中电流依赖的MEL曲线则展示从正常ISC (1—5 μA)→反常RISC (10—50 μA)→正常RISC (50—150 μA)→反常ISC (200—300 μA)过程的转换. 通过拟合和解析MEL曲线, 发现非平衡和平衡器件中的ISC和RISC过程随着电流增大都先增强后减弱. 这些丰富而有趣的转换可归因于增大电流时自旋对态增加的数量与其减短的寿命之间的竞争. 此外, 平衡器件中的RISC过程比非平衡器件中的更强, 从而导致平衡器件的外量子效率比非平衡器件的更高. 显然, 本文不但加深了对EB-OLEDs中电流依赖的ISC和RISC过程的理解, 还为设计制作高效率EB-OLEDs提供了清晰的器件物理思路.
    Intersystem crossing (ISC) and reverse ISC (RISC) between singlet and triplet polaron-pair and exciplex state are important spin-mixing processes in exciplex-based organic light-emitting diodes (EB-OLEDs). These two processes usually show normal current dependence which weakens with the increase of bias-current. This is because the bias-current increases by improving the device bias-voltage. When the bias-voltage rises, the electric field within the device is enhanced, which facilitates the electric-field-induced dissociation of polaron-pair and exciplex states and then reduces their lifetime. That is, less polaron-pair and exciplex states participate in the ISC process and RISC process, leading these two processes to weaken. Here, magneto-electroluminescence (MEL) is used as a fingerprint probing tool to observe various current-dependent ISC and RISC processes in EB-OLEDs with different charge balances via modifying the device hole-injection layer. Interestingly, current-dependent MEL traces of the unbalanced device display a conversion from normal ISC (1–25 μA) process to abnormal ISC (25–200 μA) process, whereas those of the balanced device show conversions from normal ISC (1–5 μA) into abnormal RISC (10–50 μA) and then into normal RISC (50–150 μA) and finally into abnormal ISC (200–300 μA) process. By fitting and decomposing the current-dependent MEL traces of the unbalanced and balanced devices, we find that the ISC process and RISC process in these two devices first increase then decrease as the bias-current increases. These non-monotonic current-dependent ISC process and RISC process are attributed to the competition between the increased number and the reduced lifetime of polaron-pair state and exciplex state during improving the bias-current. Furthermore, the RISC process in the balanced device is stronger than that in the unbalanced device. This is because the balanced carrier injection can facilitate the formation of triplet exciplex states and weaken the triplet-charge annihilation (TQA) process between triplet exciplex states and excessive charge carriers, which leads the number of triplet exciplex states to increase. That is to say, more triplet exciplex states can be converted into singlet exciplex states through the RISC process, causing the external quantum efficiency of the balanced device to be higher than that of the unbalanced device. Obviously, this work not only deepens the understandings of current-dependent ISC and RISC processes in EB-OLEDs, but also provides an insight into the device physics for designing and fabricating high-efficiency EB-OLEDs.
      通信作者: 熊祖洪, zhxiong@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874305)资助的课题.
      Corresponding author: Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874305).
    [1]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [2]

    Zhang B H, Xie Z Y 2019 Front. Chem. 7 306Google Scholar

    [3]

    Yang H Y, Zheng C J, Zhang M, Zhao J W, Shi Y Z, Pu C P, Lin H, Tao S L, Zhang X H 2022 Sci. China Mater. 65 460Google Scholar

    [4]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971Google Scholar

    [5]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516Google Scholar

    [6]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [7]

    Yuan P S, Guo X M, Qiao X F, Yan D H, Ma D G 2019 Adv. Optical Mater. 7 1801648Google Scholar

    [8]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013 Appl. Phys. Lett. 102 063301Google Scholar

    [9]

    Xu J, Tang X T, Zhao X, Zhu H Q, Qu F L, Xiong Z H 2020 Phys. Rev. Appl. 14 024011Google Scholar

    [10]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [11]

    Deng J Q, Jia W Y, Chen Y B, Liu D Y, Hu Y Q, Xiong Z H 2017 Sci. Rep. 7 44396Google Scholar

    [12]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [13]

    Zhao C G, Zhao F G, Wang K, Yu H M, Huang T Y, Wang R, Zhang C X, Hu B, Duan L 2020 Phys. Rev. Appl. 14 034059Google Scholar

    [14]

    Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar

    [15]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [16]

    赵茜, 汤仙童, 潘睿亨, 许静, 屈芬兰, 熊祖洪 2019 科学通报 64 2514Google Scholar

    Zhao X, Tang X T, Pan R H, Xu J, Qu F L, Xiong Z H 2019 Chin. Sci. Bull. 64 2514Google Scholar

    [17]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen T D, Wohlgenannt M, Köhler A, Suti-Al M K, Khan M S 2005 Phys. Rev. B 72 205202Google Scholar

    [18]

    Wang Y F, Tiras K S, Harmon N J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar

    [19]

    Zhu M P, Yuan X T, Ni G 2019 Micromachines 10 546Google Scholar

    [20]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 物理学报 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [21]

    Crooker S A, Liu F L, Kelley M R, Martinez N J D, Nie W Y, Mohite A D, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [22]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [23]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [24]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [25]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, Seggem H V 2009 J. Appl. Phys. 106 113702Google Scholar

    [26]

    Inal S, Schubert M, Sellinger A, Neher D 2010 J. Phys. Chem. Lett. 1 982Google Scholar

    [27]

    Li B B, Gan L, Cai X Y, Li X L, Wang Z H, Gao K, Chen D C, Cao Y, Su S J 2018 Adv. Mater. Interfaces 5 1800025Google Scholar

    [28]

    Hung W Y, Chiang P Y, Lin S W, Tang W C, Chen Y T, Liu S H, Chou P T, Hung Y T, Wong K T 2016 ACS Appl. Mater. Interfaces 8 4811Google Scholar

  • 图 1  器件的能级结构和光电特性 (a), (b) Dev. 1和Dev. 2的能级结构; (c) TAPC和PO-T2T的化学分子结构; (d) TAPC纯膜, PO-T2T纯膜和TAPC:PO-T2T共混薄膜的PL谱以及Dev. 1和Dev. 2的EL谱; (e) Dev. 1和Dev. 2的电流-电压特性曲线; (f) Dev. 1和Dev. 2的EQE-电流密度特性曲线

    Fig. 1.  Energy-level structures and photoelectric properties of devices: (a), (b) Energy-level structures of Dev. 1 and Dev. 2; (c) chemical molecular structures of TAPC and PO-T2T; (d) PL spectra from pure TAPC and PO-T2T films and TAPC:PO-T2T co-deposited film and EL spectra from Dev. 1 and Dev. 2; (e) current-voltage characteristics of Dev. 1 and Dev. 2; (f) EQE-current density characteristics of Dev. 1 and Dev. 2.

    图 2  (a) Dev. 1中电流依赖的MEL曲线和它们的拟合曲线(白色实线); (b), (c) 不同注入电流下Dev. 1中ISC, RISC和TQA过程的强度因子

    Fig. 2.  (a) Current-dependent MEL traces of Dev. 1 and their fitted curves (white solid lines); (b), (c) intensity factors of ISC, RISC, and TQA processes in Dev. 1 at different bias-currents.

    图 3  (a) Dev. 2中电流依赖的MEL曲线和它们的拟合曲线(白色实线); (b), (c) 不同注入电流下Dev. 2中ISC, RISC和TQA过程的强度因子

    Fig. 3.  (a) Current-dependent MEL traces of Dev. 2 and their fitted curves (white solid lines); (b), (c) intensity factors of ISC, RISC, and TQA processes in Dev. 2 at different bias-currents.

    图 4  不同注入电流下器件中PP态和EX态的形成和演变机制 (a) Dev. 1; (b) Dev. 2

    Fig. 4.  Formation and evolution mechanisms of PP and EX states in devices at different bias-currents: (a) Dev. 1; (b) Dev. 2.

  • [1]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [2]

    Zhang B H, Xie Z Y 2019 Front. Chem. 7 306Google Scholar

    [3]

    Yang H Y, Zheng C J, Zhang M, Zhao J W, Shi Y Z, Pu C P, Lin H, Tao S L, Zhang X H 2022 Sci. China Mater. 65 460Google Scholar

    [4]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971Google Scholar

    [5]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516Google Scholar

    [6]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [7]

    Yuan P S, Guo X M, Qiao X F, Yan D H, Ma D G 2019 Adv. Optical Mater. 7 1801648Google Scholar

    [8]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013 Appl. Phys. Lett. 102 063301Google Scholar

    [9]

    Xu J, Tang X T, Zhao X, Zhu H Q, Qu F L, Xiong Z H 2020 Phys. Rev. Appl. 14 024011Google Scholar

    [10]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [11]

    Deng J Q, Jia W Y, Chen Y B, Liu D Y, Hu Y Q, Xiong Z H 2017 Sci. Rep. 7 44396Google Scholar

    [12]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [13]

    Zhao C G, Zhao F G, Wang K, Yu H M, Huang T Y, Wang R, Zhang C X, Hu B, Duan L 2020 Phys. Rev. Appl. 14 034059Google Scholar

    [14]

    Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar

    [15]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [16]

    赵茜, 汤仙童, 潘睿亨, 许静, 屈芬兰, 熊祖洪 2019 科学通报 64 2514Google Scholar

    Zhao X, Tang X T, Pan R H, Xu J, Qu F L, Xiong Z H 2019 Chin. Sci. Bull. 64 2514Google Scholar

    [17]

    Mermer Ö, Veeraraghavan G, Francis T L, Sheng Y, Nguyen T D, Wohlgenannt M, Köhler A, Suti-Al M K, Khan M S 2005 Phys. Rev. B 72 205202Google Scholar

    [18]

    Wang Y F, Tiras K S, Harmon N J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar

    [19]

    Zhu M P, Yuan X T, Ni G 2019 Micromachines 10 546Google Scholar

    [20]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 物理学报 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [21]

    Crooker S A, Liu F L, Kelley M R, Martinez N J D, Nie W Y, Mohite A D, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [22]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [23]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [24]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [25]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, Seggem H V 2009 J. Appl. Phys. 106 113702Google Scholar

    [26]

    Inal S, Schubert M, Sellinger A, Neher D 2010 J. Phys. Chem. Lett. 1 982Google Scholar

    [27]

    Li B B, Gan L, Cai X Y, Li X L, Wang Z H, Gao K, Chen D C, Cao Y, Su S J 2018 Adv. Mater. Interfaces 5 1800025Google Scholar

    [28]

    Hung W Y, Chiang P Y, Lin S W, Tang W C, Chen Y T, Liu S H, Chou P T, Hung Y T, Wong K T 2016 ACS Appl. Mater. Interfaces 8 4811Google Scholar

  • [1] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [2] 李万娇, 关云霞, 保希, 王成, 宋家一, 徐爽, 彭柯敖, 陈丽佳, 牛连斌. Alq3/HAT-CN叠层电致发光器件的激子调控机制探究. 物理学报, 2023, 72(21): 217201. doi: 10.7498/aps.72.20230973
    [3] 魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪. 利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程. 物理学报, 2023, 72(18): 187201. doi: 10.7498/aps.72.20230998
    [4] 吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪. 激基复合物与电致激基复合物共存体系中Dexter能量传递导致的负磁效率. 物理学报, 2022, 71(22): 227201. doi: 10.7498/aps.71.20221288
    [5] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪. 利用发光磁效应研究同分异构体mCBP和CBP作为给体的激基复合物器件的微观过程. 物理学报, 2022, 71(8): 087201. doi: 10.7498/aps.71.20212068
    [6] 王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪. 纯红荧烯器件中极化子对的系间窜越与高能三重态激子的反向系间窜越过程“消失”的原因. 物理学报, 2022, 71(21): 217201. doi: 10.7498/aps.71.20221060
    [7] 陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪. 利用磁致发光曲线研究Rubrene器件中激子分裂和湮没过程. 物理学报, 2015, 64(17): 177801. doi: 10.7498/aps.64.177801
    [8] 刘宁, 张新平, 窦菲. 小分子掺杂高分子半导体薄膜中异质结结构光谱学特性研究. 物理学报, 2012, 61(2): 027201. doi: 10.7498/aps.61.027201
    [9] 陈苏杰, 于军胜, 文雯, 蒋亚东. NPB:CBP复合空穴传输层对黄色有机电致发光器件的影响. 物理学报, 2011, 60(3): 037202. doi: 10.7498/aps.60.037202
    [10] 朱德喜, 甄红宇, 叶辉, 刘旭. 基于空穴注入层摩擦定向的偏振蓝光聚合物电致发光器件. 物理学报, 2009, 58(1): 596-601. doi: 10.7498/aps.58.596
    [11] 唐晓庆, 于军胜, 李 璐, 王 军, 蒋亚东. 铱金属配合物磷光材料掺杂聚合物体系的电致发光特性. 物理学报, 2008, 57(10): 6620-6626. doi: 10.7498/aps.57.6620
    [12] 刘艳侠, 王 逊, 马永庆, 张程华. Fe-Cr-V-Ni-Si-C系多元合金的原子间互作用势的构建及应用. 物理学报, 2008, 57(1): 358-363. doi: 10.7498/aps.57.358
    [13] 锁 钒, 于军胜, 邓 静, 蒋亚东, 王 睿, 汪伟志, 刘天西. 芴-咔唑新型共聚物/PVK掺杂体系的电致发光特性研究. 物理学报, 2007, 56(11): 6685-6690. doi: 10.7498/aps.56.6685
    [14] 侯林涛, 侯 琼, 彭俊彪, 曹 镛. 三元共聚物饱和红色电致发光研究. 物理学报, 2005, 54(11): 5377-5381. doi: 10.7498/aps.54.5377
    [15] 高 琨, 付吉永, 刘德胜, 解士杰. 链间耦合对聚合物中双激子态反向极化的影响. 物理学报, 2005, 54(2): 665-668. doi: 10.7498/aps.54.665
    [16] 朱文清, 吴有智, 郑新友, 蒋雪茵, 张志林, 孙润光, 许少鸿. 双层有机电致发光器件中多成分激发态发射. 物理学报, 2004, 53(7): 2325-2329. doi: 10.7498/aps.53.2325
    [17] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉, 罗小华. 有机电致发光器件中载流子的输运和复合发光. 物理学报, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [18] 李 文, 陈岱民, 关振中, 张瑞林. Ti-Al系金属间化合物力学性能的电子理论. 物理学报, 1998, 47(12): 2064-2073. doi: 10.7498/aps.47.2064
    [19] 朱立, 鲍世宁, 徐亚伯, 徐纯一. Cu(111)面K-O复合物的形成. 物理学报, 1992, 41(8): 1385-1388. doi: 10.7498/aps.41.1385
    [20] 蒋华北. 受激渡越辐射光学速调管. 物理学报, 1990, 39(1): 61-66. doi: 10.7498/aps.39.61-2
计量
  • 文章访问数:  1348
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-06-08
  • 上网日期:  2023-06-26
  • 刊出日期:  2023-08-20

/

返回文章
返回