冷原子-分子物理
编者按:
20世纪八十年代激光冷却中性原子技术的发展开创了冷原子分子物理研究领域;1995年玻色-爱因斯坦凝聚体在冷原子气体中的实验实现吸引了凝聚态和统计物理等多学科研究人员的广泛关注,这两项开创性研究分别获得了1997年和2001年的诺贝尔物理学奖。随后,研究者在该领域迅速取得了若干其他重要突破,并逐渐和物理学的各分支,如凝聚态物理、光物理、精密测量物理、理论物理和量子信息等交叉融合,从而形成了一个全新的研究领域。
由于冷原子或冷分子都是高度可控并近乎完美的量子体系,描写它的哈密顿量的每一项参数,如动能、势能、相互作用、无序度、等效规范场等都是实验可控的,因此它可以用来模拟强关联体系以及研究一些极端条件的物理现象,同时它是量子计算物理实现的有力候选体系。另外,它可以用来精密测量各种物理量,如实现最高时间测量精度的原子钟、精密测量电磁场等,从而在军民两用领域都有重大应用价值。近几十年来,冷原子-分子物理始终是物理学国际前沿热点研究领域之一.
本专题邀请了若干活跃在该领域前沿的专家撰稿,介绍了冷原子和冷分子领域部分国际前沿课题和最新研究进展. 专题以短篇综述为主,从研究内容上可大致分为三类:一是基于冷原子分子的量子模拟(大部分文章属于此类);二是冷原子分子的实现和精确操控;三是基于冷原子分子的精密测量. 希望这个专题能够为国内高年级本科生选择科学方向、研究生选择研究课题、以及从事相关领域的研究人员提供帮助,并进而促进原子分子和量子物理学的发展.