搜索

x
专题

更多 
领域
文章类型

百岁铁电: 新材料、新应用专题

百岁铁电: 新材料、新应用专题编者按

DOI: 10.7498/aps.69.210101 

       铁电材料(ferroelectrics) 因其电极化(P) 与电场强度(E) 间存在与铁磁性材料(ferromagnetics)中磁化强度(M) 与磁场强度(H) 间相似的滞回关系而得名. 1920 年法国科学家Joseph Valasek 首次在罗息盐(酒石酸钾钠, C4O6H4KNa) 中观察到铁电现象. Valasek 不仅明确认识了铁电现象的主要特征: 永久自发电极化及极化翻转中的滞回现象, 更对相变或居里点、可逆电极化和畴结构等铁电材料的本质因素开展了系统的研究. 然而由于罗息盐机械强度较低且易吸水潮解, 铁电现象仅具有科学意义, 铁电材料及其技术应用发展缓慢. 直至20 世纪50 年代人们在具有钙钛矿结构的钛酸钡(BaTiO3) 中发现了室温强铁电性才真正开启了铁电材料大规模应用的时代. 对钙钛矿结构氧化物的深入研究不仅继而发现了锆钛酸铅(PbZrO3-PbTiO3) 这一迄今为止最重要的压电材料, 更带动了铁电理论的发展. A. F. Devonshire 基于钙钛矿氧化物铁电材料提出的“双势阱”唯像理论至今仍是理解铁电材料电极化响应的重要理论工具. 经过一个世纪的发展, 铁电材料早已成为现代信息技术不可或缺的基石之一. 以钛酸钡等高介电常数铁电材料为介质层的多层陶瓷电容器, 以锆钛酸铅压电陶瓷为基本功能单元的微机电换能器、驱动器等已经成为对国家信息产业发展具有战略意义的关键基础电子元器件. 

     近年来, 原子尺度材料制备及结构性能表征手段的进步推动了铁电材料的又一轮蓬勃发展. 对铁电材料中电荷、自旋、轨道与晶格自由度关联耦合作用的深入研究带来了极性涡旋畴、极性斯格明子等新极性拓扑物态的发现, 极大地丰富了铁电材料的物理内涵. 纳米畴工程、缔合缺陷诱导等铁电材料性能优化新范式的提出与发展, 大幅提高了铁电材料的介电常数、压电系数、放电能量密度等关键性能指标, 为新一代高性能电子元器件奠定了坚实的基础. 二维铁电体、柔性无机铁电材料、分子铁电体等新的铁电材料体系层出不穷, 为新一代半导体器件及柔性电子技术发展提供了有力支撑. 铁电材料的应用领域日益拓展, 在超高功率静电储能电容器及全固体电卡制冷器件等新领域显示出优 越的性能和良好的应用前景. 百年铁电, 风华正茂.

      受《物理学报》编辑部委托, 我邀请了国内若干位活跃于铁电材料研究前沿的中青年学者撰文, 对近年来铁电材料领域的部分热点进行总结回顾. 其中既包括对二维铁电体、柔性无机铁电材料、新型铁电拓扑结构、储能电介质材料等领域的短篇综述, 也包括报道弛豫铁电、压电及电卡效应的研究短文. 组稿期间恰逢新冠肺炎疫情肆虐, 全体作者均如约交稿, 殊为不易. 受水平及时间所限, 本专题所反映的铁电材料研究现状难免挂一漏万, 错失之处恳请各位同仁不吝指正. 希望本专题能对国内铁电材料研究的学术交流做一点贡献.

客座编辑:清华大学材料学院 沈洋
物理学报. 2020, 69(21).
新型铁电拓扑结构的构筑及其亚埃尺度结构特性
王宇佳, 耿皖荣, 唐云龙, 朱银莲, 马秀良
2020, 69 (21): 216801. doi: 10.7498/aps.69.20201718
摘要 +
铁电拓扑结构因其尺寸小而且具有优良的物理特性, 有望应用于未来高性能电子器件中. 本文从应变、屏蔽和外场等对于铁电材料至关重要的几个外部要素出发, 结合薄膜厚度等材料内部参数, 针对PbTiO3和BiFeO3这两种典型的铁电材料, 简要总结新型铁电拓扑结构的形成及其在外场作用下的演变规律. 利用具有亚埃尺度分辨能力的像差校正透射电子显微术呈现了相关拓扑结构的原子结构图谱, 构建了针对PbTiO3体系的厚度-应变-屏蔽相图, 系统归纳了两种材料中各种拓扑结构的形成条件. 最后指出这两类铁电材料中易于调控出拓扑结构的几何维度体系, 并指出像差校正透射电子显微术在表征铁电拓扑结构方面的重要作用, 展望了未来可能的关注重点.
铁电纳米结构中奇异极化拓扑畴的研究新进展
杨文达, 陈洪英, 陈䶮, 田国, 高兴森
2020, 69 (21): 217501. doi: 10.7498/aps.69.20201063
摘要 +
铁电体中极化拓扑畴(如涡旋畴)有望带来一系列新颖物理现象、新性能和新应用前景(如存储器件应用), 从而引起了广泛兴趣. 尤其是近年来在铁电纳米结构中发现了一系列有趣的新奇极化拓扑畴态, 例如涡旋、中心畴、斯格明子、麦韧(Meron, 也有称半子)等, 引发了新一轮探索热潮. 这些发现为进一步探索其中蕴含的丰富多彩的物理现象创造了条件, 也为调控和设计高性能材料和器件提供了新的基元和序构, 从而形成拓扑电子学的概念. 过去十年, 这一领域经历了快速发展, 成长为铁电物理领域的前沿热点. 本文将回顾近年来在铁电纳米结构中奇异极化拓扑畴的研究新进展, 并简要讨论了该领域所存在的问题和潜在发展方向.
电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体
安明, 董帅
2020, 69 (21): 217502. doi: 10.7498/aps.69.20201193
摘要 +
磁电耦合效应是百年铁电领域中新兴的科学话题和前沿难点. 包含两种及以上铁性序的多铁性材料则是追求本征强磁电耦合的理想体系, 其展现了丰富的物理性质, 蕴含着很高的应用潜力. 作为关联电子大家庭的一个分支, 多铁性材料体系也涉及电荷、自旋、轨道, 以及晶格多重自由度. 但过往的磁电耦合研究对自旋与晶格自由度关注最多, 却往往忽略了其中的电荷自由度. 实际上, 电荷自由度可以在磁电耦合中扮演重要的媒介作用. 本文将介绍异质结中的铁电场效应和单相多铁性材料中的电荷序所涉及的磁电耦合物理机制, 以及回顾作者近年来在此方向上的若干尝试, 希望能为本领域的研究者提供一些参考.
面向高温介电储能应用的聚合物基电介质材料研究进展
董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏
2020, 69 (21): 217701. doi: 10.7498/aps.69.20201006
摘要 +
介电储能电容器以其充放电速度快、功率密度高等优点, 在现代电子和电力系统中得到了广泛应用. 目前, 与可再生能源相关的新兴产品, 如混合动力汽车、并网光伏发电和风力发电、井下油气勘探等, 对于介电储能电容器的高温储能性能提出了更高的要求. 本文总结了近年来关于聚合物及其纳米复合电介质材料的高温介电储能研究中的代表性研究进展, 为该领域科研工作者进一步研究提供参考. 首先介绍了电介质材料储能的物理机理, 并对电介质材料的几种电导机制进行了总结和分析; 接下来介绍了目前提高聚合物基电介质材料高温储能性能的几种方法, 包括纳米复合改性和相关的层状结构设计, 以及高分子聚合物的分子结构设计和化学交联处理等; 最后对聚合物基电介质材料在高温储能应用领域中尚待解决的科学技术问题进行了讨论, 并展望了未来可能的研究方向.
钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能
王娇, 刘少辉, 陈长青, 郝好山, 翟继卫
2020, 69 (21): 217702. doi: 10.7498/aps.69.20201031
摘要 +
随着功率型电子器件设备向小型化和高性能化方向发展, 迫切需要高储能密度、高充放电效率、易加工成型、性能稳定的介质材料. 目前BaTiO3基介电陶瓷具有较高的介电常数, 但耐击穿场强低、柔性差, 而聚合物基电介质材料具有超高功能密度、超快的充放电响应时间、良好的柔韧性、高耐击穿场强、质量轻等优点, 但聚合物材料本身存在介电常数较低、极化强度低等问题, 因此导致两者储能密度较低, 限制了在小型化功率型电容器元件中的应用. 为了获得高储能性能材料, 科学家提出通过复合的方式将高介电常数无机陶瓷填料加入到聚合物中, 提高材料的储能性能, 界面在材料的性能中扮演着至关重要的角色, 本文综述了钛酸钡基/聚偏氟乙烯复合电介质材料界面设计和控制的最新研究进展. 总结了偶联剂、表面活性剂表面改性、聚合物壳层表面修饰、无机壳层表面改性、有机-无机壳层协同改性等界面改性方法对复合材料极化和储能性能的影响, 探讨了现有的界面模型与理论研究方法, 概述了存在的挑战和实际局限性, 展望了未来的研究方向.
压电效应—百岁铁电的守护者
李飞, 张树君, 徐卓
2020, 69 (21): 217703. doi: 10.7498/aps.69.20200980
摘要 +
作为电介质大家庭的重要成员, 铁电材料以其蕴含丰富的物理性质而闻名, 并因此吸引了大量科技工作者. 压电效应是铁电材料最为重要的物理性质之一, 同时也是目前铁电材料所有物理性质中应用最为广泛的. 例如: 水声声呐系统、医疗超声探头、压电驱动器等器件的核心压电元件均为铁电材料. 本文将以时间为轴, 重点介绍钛酸铅基铁电材料压电效应的发展历史, 同时讨论铁电材料微观结构、极化状态与压电效应之间的构效关系. 本文涉及到影响铁电材料压电效应的一些重要因素, 如: “准同型相界”、“软性掺杂”、“极化旋转”、“局域结构无序”等, 希望能够在铁电功能材料的设计方面给予读者启发.
晶粒尺寸对钙钛矿型压电陶瓷压电性能的影响
刘亦轩, 李昭, 汤浩正, 逯景桐, 李敬锋, 龚文, 王轲
2020, 69 (21): 217704. doi: 10.7498/aps.69.20201079
摘要 +
压电陶瓷能够通过正/逆压电效应实现电能与机械能之间的相互转化, 在电子信息、通信、传感等领域中具有广阔的应用前景. 压电陶瓷的压电性能对晶粒尺寸极为敏感, 其晶粒尺寸效应的研究受到了广泛关注. 本文对目前应用较多的几类钙钛矿型压电陶瓷, 包括钛酸钡、锆钛酸铅、铌酸钾钠、钛酸铋钠陶瓷的压电性能晶粒尺寸效应的研究与进展进行了综述; 总结了这些体系中晶粒尺寸的调控方法, 晶粒尺寸效应的表现规律, 同时回顾了相关物理模型与理论机制. 本文为系统理解压电性能的晶粒尺寸效应提供了指导, 并对压电陶瓷晶粒尺寸效应的未来研究方向做出了展望.
高储能密度铁电聚合物纳米复合材料研究进展
沈忠慧, 江彦达, 李宝文, 张鑫
2020, 69 (21): 217706. doi: 10.7498/aps.69.20201209
摘要 +
介电电容器具有超高功率密度、低损耗以及高工作电压等优点, 是广泛应用于电子电力系统的关键储能器件. 铁电聚合物是发展高储能密度电介质薄膜材料的理想选择, 而基于铁电聚合物的纳米复合材料则兼具了聚合物的高击穿场强、柔性、易加工等特点以及陶瓷的高介电性能, 是近年来电介质储能材料研究的前沿与热点. 本文首先介绍了铁电聚合物材料的制备、铁电性能以及极化特性的调控方法, 随后总结了铁电聚合物纳米复合材料中纳米填料、复合结构以及界面三个关键调控策略对复合材料介电与储能性能的影响, 并探讨了基于相场方法的纳米复合材料中介电与储能特性的微观机制研究, 最后对高储能密度铁电聚合物纳米复合材料现存问题以及未来发展方向进行了总结与展望.
二维层间滑移铁电研究进展
钟婷婷, 吴梦昊
2020, 69 (21): 217707. doi: 10.7498/aps.69.20201432
摘要 +
近年来有一系列二维范德瓦耳斯材料铁电性被实验证实, 层间滑移铁电体是其中重要的一类, 该机制是传统铁电所没有, 而很多二维材料普遍具有的. 本文回顾了相关研究, 介绍了这种铁电的起源: 不少二维材料双层中上下两层并不对等, 造成净层间垂直电荷转移, 而层间滑移使该垂直铁电极化得以翻转. 这种独特的滑移铁电可广泛存在于范德瓦耳斯双层、多层乃至体相结构中, 层间滑移势垒较传统铁电低几个数量级, 有望极大节约铁电翻转所需的能量. 目前这种滑移铁电机制已在WTe2β-InSe双层/多层体系得到实验证实, 不少预期极化更高的滑移铁电体系(如BN)也有望在近期实现.
柔性无机铁电薄膜的制备及其应用
蓝顺, 潘豪, 林元华
2020, 69 (21): 217708. doi: 10.7498/aps.69.20201365
摘要 +
无机铁电薄膜材料有着优异的电、光特性, 被广泛应用于介电、信息存储、压电、光电等领域. 然而, 基于单晶刚性基底和高温、含氧的合成环境的传统制备工艺, 大大限制了其在柔性电子器件中的应用. 实现无机铁电薄膜材料的柔性化可以将这些材料的性能优势进一步应用到可穿戴电子器件中, 是下一代可穿戴电子器件领域的重要发展方向. 本文综述了无机钙钛矿结构铁电薄膜的柔性化制备工艺, 包括直接在柔性基底上生长和将铁电薄膜从刚性基底上剥离、转印到柔性基底两类. 并介绍了柔性无机铁电薄膜的应用, 对其研究现状及未来发展进行了总结与展望.
钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用
裴明辉, 田瑜, 张金星
2020, 69 (21): 217709. doi: 10.7498/aps.69.20200884
摘要 +
钙钛矿型铁电氧化物由于具有本征的、非易失的、可翻转的自发极化以及带有高电荷密度的极性表面等特性, 被认为是最有前途的功能材料之一. 研究钙钛矿型铁电氧化物的表面结构对理解其表面/界面能量转化、调控表面物质吸附和脱附、控制界面化学反应、以及设计稳定的低功耗电子器件具有重要意义. 本文首先概述了铁电相与其表面结构的关系, 并介绍了钙钛矿型铁电氧化物复杂表面结构的形成; 之后阐述了铁电表面/界面结构的调控机制, 为后续的钙钛矿型铁电氧化物的表面结构设计、表面性能与功能的控制提供了研究基础; 最后介绍了铁电氧化物表面/界面的功能调控和潜在器件的设计, 并结合目前铁电材料领域表面科学研究的局限性, 对今后基于钙钛矿型铁电氧化物表面结构的研究发展以及应用前景提出了展望.
二维本征铁电体及其多铁耦合的研究进展
叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚
2020, 69 (21): 217710. doi: 10.7498/aps.69.20201433
摘要 +
铁电材料因其具有可被外场调控的电极化状态, 以及在传感器、光电器件和信息存储器件中具有潜在应用前景, 所以一直以来都是凝聚态物理领域的研究热点. 随着微电子集成技术的飞速发展, 电子器件日益趋于微型化、集成化和多功能化. 传统块体铁电材料因受尺寸效应、界面效应等因素影响, 难以满足此发展需求, 因而低维铁电材料引起了学术界的广泛关注. 近年来, 实验上已成功制备出稳定的室温二维铁电材料, 第一性原理计算等理论方法对新材料的预测和设计也促进了二维铁电材料的发展. 同时, 利用二维铁电性与铁谷性、磁性的多铁耦合效应, 可以实现电控谷极化、电控磁性等调控机制. 多重自由度的相互耦合, 会产生如能谷间圆(线)偏振光学选择性、量子自旋霍尔效应等奇异物理特性, 对于自旋电子学、谷电子学及光学的发展具有重大的意义. 本文首先介绍近年来新型二维铁电材料在理论和实验方面的研究进展, 以及二维铁电材料在铁电隧道结、铁电二极管等二维铁电器件中的应用. 其次阐述了二维电控铁谷性和电控磁性的多铁耦合效应及其衍生出的新物理现象和机制. 最后对二维铁电材料和其他物理性质耦合所具有的丰富物理内涵和广阔应用前景, 进行了分析与探讨.
高性能铌酸钾钠基无铅陶瓷的压电和电卡性能
魏晓薇, 陶红, 赵纯林, 吴家刚
2020, 69 (21): 217705. doi: 10.7498/aps.69.20200540
摘要 +
压电陶瓷作为一种能够实现机械能和电能相互转换的功能材料, 在民用和军事方面都有着广泛应用. 随着人们环保及健康意识的提高, 高性能兼具环境协调性的无铅压电陶瓷的研究成为了一项紧迫任务. 在众多无铅材料中, (K, Na)NbO3 (KNN)基陶瓷因其优异的综合性能而受到关注, 但是利用相界同时调控高压电和电卡性能的研究偏少. 本文采用传统固相方法制备了0.944K0.48Na0.52Nb0.95Sb0.05O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3-1.6%(AgxNa1–x)SbO3-0.4%Fe2O3 (x = 0—1.0)无铅压电陶瓷, 重点研究了AgSbO3/NaSbO3对陶瓷相结构、压电和电卡性能的影响. 研究结果表明: 陶瓷在研究组分范围内均为“三方-正交-四方”三相共存; 随着AgSbO3含量的增加, 该陶瓷的压电及铁电性能均有所波动(d33 = 518—563 pC/N, kp = 0.45—0.56, Pmax = 21—23 μC/cm2Pr = 14—17 μC/cm2). 同时, 利用间接法表征了该陶瓷的电卡效应, 在居里温度附近得到了较高的电卡温变值(>0.6 K). 因此, 在KNN基陶瓷中通过相界构建能够同时实现高压电和良好的电卡性能.
Landau-Devonshire理论探究不同类型铁电材料的电卡效应
高荣贞, 王静, 王俊升, 黄厚兵
2020, 69 (21): 217801. doi: 10.7498/aps.69.20201195
摘要 +
近年来, 低成本、高效、环保的电卡效应制冷材料得到了广泛研究, 其中包括无机钙钛矿、有机钙钛矿、有机聚合物、分子铁电材料和二维铁电材料等. 这些不同铁电材料的相变类型和电卡性能各异, 而造成其差异的物理起源尚不明确. 本文选择传统无机钙钛矿BaTiO3, PbTiO3和BiFeO3, 有机钙钛矿[MDABCO](NH4)I3, 有机聚合物P(VDF-TrFE), 分子铁电体ImClO4和二维铁电体CuInP2S6这七种材料, 利用Landau-Devonshire理论, 研究并对比了其温变、熵变和电卡强度. 通过分析自由能与极化之间的关系发现, 在相变点附近, 铁电材料的自由能势垒高度随温度的变化率越大, 造成的极化随温度的变化率越高, 而材料的电卡性能也越优异. 本文揭示了不同类型铁电材料电卡性能差异的物理起源, 为进一步开发具有高电卡性能的铁电材料提供理论指导.