Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films

Li Yong-Chao Zhou Hang Pan Dan-Feng Zhang Hao Wan Jian-Guo

Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films

Li Yong-Chao, Zhou Hang, Pan Dan-Feng, Zhang Hao, Wan Jian-Guo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The multiferroic Co/Co3O4/PZT composite films are prepared on Pt/Ti/SiO2/Si wafers by sol-gel process combined with pulsed laser deposition method. The phase structures, microstructural topographies and element valence states of the composite films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). The ferroelectric, electrical and magnetic properties as well as the magnetoelectric coupling behaviors are measured, and the exchange bias effect and its influence on the magnetoelectric coupling behavior of the composite film are studied systematically. #br#The results show the composite films have well-defined ferroelectric hysteresis loops with a remanent polarization value of ~17 μ C/cm2. The composite film exhibits evidently an exchange bias effect. Typically, a exchange bias field of ~80 Oe is observed at 77 K. Both the exchange bias field and magnetic coercive field increase with reducing the temperature. The exchange bias field increases to 160 Oe when the temperature decreases to 10 K. The XPS results confirm that an about 5 nm-thick CoO layer appears at the Co/Co3O4 interface due to the oxygen diffusion during the preparation, indicating that the exchange bias effect at 77 K is caused by the pinning effect of the antiferromagnetic CoO layer while the exchange bias effect at 10 K originates from the combining effect of antiferromagnetic CoO and Co3O4 layers. #br#The measureflent results of magnetocapacitance versus magnetic field curves at different temperatures show that the composite films have remarkable magnetoelectric coupling properties. The response of capacitance to temperature changes with the variation of external magnetic field. Further investigations show that the composite film possesses distinct anisotropic magnetocapacitance effect. When the direction of the magnetic field changes, the magnetocapacitance of the composite film changes from positive value to negative value. Moreover, the magnetocapacitance value changes with the variations of temperature and magnetic field magnitude. Typically, at 300 K a maximum value of positive magnetocapacitance (5.49%) and a minimum value of negative magnetocapacitance of (1.85%) are obtained at -4000 and 4000 kOe, respectively. When the temperature is reduced to 10 K, the positive magnetocapacitance decreases to a minimum value (0.64%) while the negative magnetocapacitance increases to a maximum value (5.4%). We perform a detailed analysis on such a magnetoelectric coupling behavior, and elucidate its origin, which should be attributed to the exchange bias effect and interface-mediated magnetism-stress-electricity coupling process.
    • Funds: Projects supported by the State Key Development Program for Basic Research of China (Grant No. 2015CB921203), the National Natural Science Foundation of China (Grant Nos. 51472113, 11134005), and the the Scientific Research Foundation of the Higher Education Institutions of NingXia Province, China (Grant No. NGY2013105).
    [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [2]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [3]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [4]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [7]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [8]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [9]

    Bibes M, Barthélémy A 2008 Nat. Mater. 7 425

    [10]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [11]

    Radaelli G, Petti D, Plekhanov E, Fina I, Torelli P, Salles B R, Cantoni M, Rinaldi C, Gutiérrez D, Panaccione G, Varela M, Picozzi S, Fontcuberta J, Bertacco R 2014 Nat. Commun. 5 3404

    [12]

    Lu X L, Kim Y, Goetze S, Li X G, Dong S N, Warner P, Alexe M, Hesse D 2011 Nano Lett. 11 3202

    [13]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin A, nal A A, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M 2014 Nat. Mater. 13 345

    [14]

    Wan J G, Wang X W, Wu Y J, Zeng M, Wang Y, Jiang H, Zhou W Q, Wang G H, Liu J M 2005 Appl. Pys. Lett. 86 122501

    [15]

    Chen B, Li Y C, Wang J Y, Wan J G, Liu J M 2014 J. Appl. Phys. 115 044102

    [16]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [17]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [18]

    Qu T L, Zhao Y G, Yu P, Zhao H C, Zhang S, Yang L F 2014 Appl. Pys. Lett. 100 242410

    [19]

    Lage E, Kirchhof C, Hrkac V, Kienle L, Jahns R, Knöchel R, Quandt E, Meyners D 2012 Nat. Mater. 11 523

    [20]

    Fan Y, Smith K J, Lpke G, Hanbicki A T, Goswami R, Li C H, Zhao H B, Jonker B T 2013 Nat. Nanotech. 8 438

    [21]

    Nogués J, Schuller K 1999 J. Magn. Magn. Mater. 192 203

    [22]

    Przybylshi K, Smeltzer W W 1981 J. Electrochem. Soc. 128 897

    [23]

    Wang Y X, Zhang Y J, Gao Y M, Lu M, Yang J H 2008 J. Alloys. Compd. 450 128

    [24]

    Vaz C A, Altman E I, Henrich V E 2010 Phys. Rev. B 81 104428

    [25]

    Yu G H, Chai C L, Zhu F W, Xiao J M, Lai W Y 2001 Appl. Pys. Lett. 78 1706

    [26]

    Wang S G, Huan G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935

    [27]

    Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006

    [28]

    Miltényi P, Gierlings M, Keller J, Beschoten B, Gntherodt G 2000 Phys. Rev. Lett. 84 4224

    [29]

    Zhou S M, Sun L, Searon P C, Chien C L 2004 Phys. Rev. B 69 024408

    [30]

    Hong J, Leo T, Smith D J, Berkowitz A E 2006 Phys. Rev. Lett. 96 117204

    [31]

    Kim W, Oh S J, Nahm T U 2002 Sci. Rev. Lett. 9 931

    [32]

    Chuang T J, Brundle C R, Rice D W 1976 Sur. Sci. 59 423

    [33]

    Petitto S C, Langell M A 2004 J. Vac. Sci. Technol. A 22 1690

    [34]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin:Springer Berlin Heidelberg) p916

    [35]

    Bouzid A, Bourim E M, Gabbay M, Fantozzi G 2005 J. Eur. Ceram. Soc. 25 3213

    [36]

    Iliev M, Angelov S, Kostadinov I Z, Bojchev V, Hadjiev V 1982 Phys. Stat. Sol. 71 627

    [37]

    Lee E W 1955 Rep. Prog. Phys.. 18 184

  • [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [2]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [3]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [4]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [7]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [8]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [9]

    Bibes M, Barthélémy A 2008 Nat. Mater. 7 425

    [10]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [11]

    Radaelli G, Petti D, Plekhanov E, Fina I, Torelli P, Salles B R, Cantoni M, Rinaldi C, Gutiérrez D, Panaccione G, Varela M, Picozzi S, Fontcuberta J, Bertacco R 2014 Nat. Commun. 5 3404

    [12]

    Lu X L, Kim Y, Goetze S, Li X G, Dong S N, Warner P, Alexe M, Hesse D 2011 Nano Lett. 11 3202

    [13]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin A, nal A A, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M 2014 Nat. Mater. 13 345

    [14]

    Wan J G, Wang X W, Wu Y J, Zeng M, Wang Y, Jiang H, Zhou W Q, Wang G H, Liu J M 2005 Appl. Pys. Lett. 86 122501

    [15]

    Chen B, Li Y C, Wang J Y, Wan J G, Liu J M 2014 J. Appl. Phys. 115 044102

    [16]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [17]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [18]

    Qu T L, Zhao Y G, Yu P, Zhao H C, Zhang S, Yang L F 2014 Appl. Pys. Lett. 100 242410

    [19]

    Lage E, Kirchhof C, Hrkac V, Kienle L, Jahns R, Knöchel R, Quandt E, Meyners D 2012 Nat. Mater. 11 523

    [20]

    Fan Y, Smith K J, Lpke G, Hanbicki A T, Goswami R, Li C H, Zhao H B, Jonker B T 2013 Nat. Nanotech. 8 438

    [21]

    Nogués J, Schuller K 1999 J. Magn. Magn. Mater. 192 203

    [22]

    Przybylshi K, Smeltzer W W 1981 J. Electrochem. Soc. 128 897

    [23]

    Wang Y X, Zhang Y J, Gao Y M, Lu M, Yang J H 2008 J. Alloys. Compd. 450 128

    [24]

    Vaz C A, Altman E I, Henrich V E 2010 Phys. Rev. B 81 104428

    [25]

    Yu G H, Chai C L, Zhu F W, Xiao J M, Lai W Y 2001 Appl. Pys. Lett. 78 1706

    [26]

    Wang S G, Huan G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935

    [27]

    Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006

    [28]

    Miltényi P, Gierlings M, Keller J, Beschoten B, Gntherodt G 2000 Phys. Rev. Lett. 84 4224

    [29]

    Zhou S M, Sun L, Searon P C, Chien C L 2004 Phys. Rev. B 69 024408

    [30]

    Hong J, Leo T, Smith D J, Berkowitz A E 2006 Phys. Rev. Lett. 96 117204

    [31]

    Kim W, Oh S J, Nahm T U 2002 Sci. Rev. Lett. 9 931

    [32]

    Chuang T J, Brundle C R, Rice D W 1976 Sur. Sci. 59 423

    [33]

    Petitto S C, Langell M A 2004 J. Vac. Sci. Technol. A 22 1690

    [34]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin:Springer Berlin Heidelberg) p916

    [35]

    Bouzid A, Bourim E M, Gabbay M, Fantozzi G 2005 J. Eur. Ceram. Soc. 25 3213

    [36]

    Iliev M, Angelov S, Kostadinov I Z, Bojchev V, Hadjiev V 1982 Phys. Stat. Sol. 71 627

    [37]

    Lee E W 1955 Rep. Prog. Phys.. 18 184

  • [1] Li Sheng-Kun, Tang Jun, Mao Hong-Qing, Wang Ming-Huan, Chen Guo-Bin, Zhai Chao, Zhang Xiao-Ming, Shi Yun-Bo, Liu Jun. Effect of magnetic capacitance in the Fe3O4 nanopartides and polydimethylsiloxane composite material. Acta Physica Sinica, 2014, 63(5): 057501. doi: 10.7498/aps.63.057501
    [2] Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya. Optimization design for magnetoelectric coupling property of the magnet/bimorph composite. Acta Physica Sinica, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [3] Yu Bin, Hu Zhong-Qiang, Cheng Yu-Xin, Peng Bin, Zhou Zi-Yao, Liu Ming. Recent progress of multiferroic magnetoelectric devices. Acta Physica Sinica, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [4] Yu Guang-Hua, Zhu Feng-Wu, He Ge, Lai Wu-Yan, Li Ming-Hua. . Acta Physica Sinica, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [5] Xu Xiao-Yong, Pan Jing, Hu Jing-Guo. Configuration of the antiferromagnetic magnetization and the exchange anisotropy in exchange-biased bilayers. Acta Physica Sinica, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [6] Tao Yong-Chun, Pan Jing, Hu Jing-Guo. The exchange bias in ferromagnetic/antiferro-magnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [7] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [8] Luo Yi, Zhao Guo-Ping, Yang Hai-Tao, Song Ning-Ning, Ren Xiao, Ding Hao-Feng, Cheng Zhao-Hua. Exchange bias effect in single crystalline phase MnO nanoparticles. Acta Physica Sinica, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [9] Tian Hong-Yu, Hu Jing-Guo, Xu Xiao-Yong. The influence of the cooling field on the exchange bias in ferromagnet/antiferromagnet bilayers system. Acta Physica Sinica, 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [10] Wei Ji-Zhou, Zhang Ming, Deng Hao-Liang, Chu Shang-Jie, Du Min-Yong, Yan Hui. Preparation and exchange bias effects of Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3 heterostructures. Acta Physica Sinica, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [11] Pan Jing, Ma Mei, Zhou Lan, Hu Jing-Guo. Ferromagnetic resonance in ferromagnetic/antiferromagnetic bilayers under the stress field. Acta Physica Sinica, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [12] He Xue-Min, Zhong Wei, Du You-Wei. Controllable synthesis and performance of magnetic nanocomposites with core/shell structure. Acta Physica Sinica, 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [13] Zhang Hong-Wu, Zhou Wen-Ping, Liu En-Ke, Wang Wen-Hong, Wu Guang-Heng. Magnetic field-induced martensitic transformation, superspin glass and exchange bias in Heusler alloys NiCoMnSn. Acta Physica Sinica, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [14] JIN XIAO-FENG, DONG GUO-SHENG, JING CHAO, GONG XIAO-YAN, YU LI-MING, ZHENG WEI-MIN. EXCHANGE BIASING IN MOLECULAR-BEAM-EPITAXY-GROWN Fe/Fe50Mn50 BILAYERS. Acta Physica Sinica, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
    [15] Xiong Xiao-Tao, Zhu Feng-Wu, Teng Jiao, Cai Jian-Wang, Lai Wu-Yan. The establishment and thermal stability of exchange bias in NiFe/FeMn bilayers. Acta Physica Sinica, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [16] Zhou Guang-Hong, Pan Xuan, Zhu Yu-Fu. Exchange bias in BiFeO3/Ni81Fe19 magnetic films and its thermal stability. Acta Physica Sinica, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [17] Xiong Xiao-Tao, Zhu Feng-Wu, Cai Jian-Wang, Lai Wu-Yan, Teng Jiao. Theinfluenceof(Ni0 81 Fe0 1 9)1 -xCrxseedlayerontheexchangebiasofNiFe FeMnbilayers. Acta Physica Sinica, 2002, 51(12): 2849-2853. doi: 10.7498/aps.51.2849
    [18] Teng Jiao, Wang Li-Jin, Yu Guang-Hua, Zhu Feng-Wu, Li Bao-He, Zhai Zhong-Hai. Exchange bias with perpendicular anisotropy in (Pt/Co)n/FeMn multilayers. Acta Physica Sinica, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [19] Li Zhi-Wen, He Xue-Min, Yan Shi-Ming, Song Xue-Yin, Qiao Wen, Zhang Xing, Zhong Wei, Du You-Wei. Synthesis, microstructure, and magnetic properties of -Fe2O3/NiO core/shell nanoflowers. Acta Physica Sinica, 2016, 65(14): 147101. doi: 10.7498/aps.65.147101
    [20] Shen Jian-Lei, Li Meng-Meng, Zhao Rui-Bin, Li Guo-Ke, Ma Li, Zhen Cong-Mian, Hou Deng-Lu. Role of Ni-Mn hybridization in the martensitic transformation and magnetism of Mn50Ni41-xSn9Cux alloys. Acta Physica Sinica, 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
  • Citation:
Metrics
  • Abstract views:  730
  • PDF Downloads:  309
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2014
  • Accepted Date:  16 February 2015
  • Published Online:  05 May 2015

Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films

  • 1. National Laboratory of Solid State Microstructures and Department of Physicss, Nanjing University, Nanjing 210093, China;
  • 2. Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA;
  • 3. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Fund Project:  Projects supported by the State Key Development Program for Basic Research of China (Grant No. 2015CB921203), the National Natural Science Foundation of China (Grant Nos. 51472113, 11134005), and the the Scientific Research Foundation of the Higher Education Institutions of NingXia Province, China (Grant No. NGY2013105).

Abstract: The multiferroic Co/Co3O4/PZT composite films are prepared on Pt/Ti/SiO2/Si wafers by sol-gel process combined with pulsed laser deposition method. The phase structures, microstructural topographies and element valence states of the composite films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). The ferroelectric, electrical and magnetic properties as well as the magnetoelectric coupling behaviors are measured, and the exchange bias effect and its influence on the magnetoelectric coupling behavior of the composite film are studied systematically. #br#The results show the composite films have well-defined ferroelectric hysteresis loops with a remanent polarization value of ~17 μ C/cm2. The composite film exhibits evidently an exchange bias effect. Typically, a exchange bias field of ~80 Oe is observed at 77 K. Both the exchange bias field and magnetic coercive field increase with reducing the temperature. The exchange bias field increases to 160 Oe when the temperature decreases to 10 K. The XPS results confirm that an about 5 nm-thick CoO layer appears at the Co/Co3O4 interface due to the oxygen diffusion during the preparation, indicating that the exchange bias effect at 77 K is caused by the pinning effect of the antiferromagnetic CoO layer while the exchange bias effect at 10 K originates from the combining effect of antiferromagnetic CoO and Co3O4 layers. #br#The measureflent results of magnetocapacitance versus magnetic field curves at different temperatures show that the composite films have remarkable magnetoelectric coupling properties. The response of capacitance to temperature changes with the variation of external magnetic field. Further investigations show that the composite film possesses distinct anisotropic magnetocapacitance effect. When the direction of the magnetic field changes, the magnetocapacitance of the composite film changes from positive value to negative value. Moreover, the magnetocapacitance value changes with the variations of temperature and magnetic field magnitude. Typically, at 300 K a maximum value of positive magnetocapacitance (5.49%) and a minimum value of negative magnetocapacitance of (1.85%) are obtained at -4000 and 4000 kOe, respectively. When the temperature is reduced to 10 K, the positive magnetocapacitance decreases to a minimum value (0.64%) while the negative magnetocapacitance increases to a maximum value (5.4%). We perform a detailed analysis on such a magnetoelectric coupling behavior, and elucidate its origin, which should be attributed to the exchange bias effect and interface-mediated magnetism-stress-electricity coupling process.

Reference (37)

Catalog

    /

    返回文章
    返回