搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单一晶相氧化锰纳米颗粒的交换偏置效应

罗毅 赵国平 杨海涛 宋宁宁 任肖 丁浩峰 成昭华

单一晶相氧化锰纳米颗粒的交换偏置效应

罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华
PDF
导出引用
  • 本文利用高温油相法制备出尺寸、形状均一的 MnO纳米颗粒, X射线衍射图 (XRD) 和透射电子显微镜 (TEM) 照片清晰表明MnO纳米颗粒为单一的面心立方岩盐晶体结构, 尺寸为15nm, 粒径分布很窄. 通过零场冷却 (ZFC) 和带场冷却 (FC)的磁滞回线发现MnO纳米颗粒具有明显的交换偏置效应, 而且磁滞回线同时表现出横向和纵向偏移. 横向偏移说明纳米颗粒中两相复合的存在, 纵向偏移说明了存在自旋玻璃相或者超顺磁相. 进而通过不同频率下随温度变化的交流磁化率的测定, 根据Mydosh的经验数值确认 MnO纳米颗粒表面层为自旋玻璃相, 并得到 MnO纳米颗粒表面自旋玻璃相的转变温度为TSG=32K.
    • 基金项目: 国家自然科学基金(批准号: 51071173, 11274370, 50931006, 11074179);科技部项目(批准号: 2012CB933102, 2011CB921801, 2010CB934202)和四川高校科研创新团队建设计划(批准号: 12TD008)资助的课题.
    [1]

    Sun S, Murray C B, Weller D, Folks L, Moser A 2000 Science 287 1989

    [2]

    Sahoo S, Petracic O, Kleemann W, Stappert S, Dumpich G, Nordblad P, Cardoso, Freitas P 2003 Appl. Phys. Lett. 82 4116

    [3]

    Yang H T, Hasegawa D, Takahashi M, Ogawa T 2009 Appl. Phys. Lett. 94 013103

    [4]

    Brannon-Peppas L, Blanchette J O 2004 Adv. Drug Deliv. Rev. 56 1649

    [5]

    Gu H, Xu K, Xu C, Xu B 2006 Chem. Commun. 9 941

    [6]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [7]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [8]

    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J 2003 Nature (London) 423 850

    [9]

    Salazar-Alvarez G, Sort J, Suriñach S, Dolors Baro M, Nogués J 2007 J. Am. Chem. Soc. 129 9102

    [10]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E F 2008 Phys. Rev. B 77 024403

    [11]

    López-Ortega A, Tobia D, Winkler E, Golosovsky I V, Salazar-Alvarez G, Estradé S, Estrader M, Sort J M, González A, Suriñach S, Arbiol J, Peiró F, Zysler R D, Baró M D, Nogués J 2010 J. Am. Chem. Soc. 132 9398

    [12]

    Schladt T D, Graf T, Tremel W 2009 Chem. Mater. 21 3183

    [13]

    Golosovsky I V, Salazar-Alvarez G, Lpez-Ortega A, González M A, Sort J, Estrader M, Suriñach S, Bar M D, Nogués J 2009 Phys. Rev. Lett. 102 247201

    [14]

    Tang Y K, Sun Y, Cheng Z H 2006 Phys. Rev. B 73 012409

    [15]

    Tang Y K, Sun Y, Cheng Z H 2006 Phys. Rev. B 73 174419

    [16]

    Zhang X K, Tang S L, Li Y L, Du Y W 2010 Phys. Lett. A 374 2175

    [17]

    He L 2011 J. Appl. Phys. 109 123915

    [18]

    Mulder C A M, Vanduyneveldt A J, Mydosh J A 1981 Phys. Rev. B 23 1384

    [19]

    Mydosh J A 1993 Spin Glasses: An Experimental Introduction (Taylor & Francis, London)

    [20]

    Chu H F, Li J, Li S, Li S L, Wang J, Gao Y L, Deng H, Wang N, Zhang Y, Wu Y L, Zheng D N 2010 Acta. Phys. Sin. 59 6585 (in Chinese) [储海峰, 李洁, 李绍, 黎松林, 王佳, 高艳丽, 邓辉, 王宁, 张玉, 吴玉林, 郑东宁 2010 物理学报 59 6585]

    [21]

    Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393

    [22]

    Liu N, Yan G Q, Mao Q, Wang G Y, Guo H Y 2010 Acta. Phys. Sin. 59 5759 (in Chinese) [刘宁, 严国清, 毛强, 王桂英, 郭焕银 2010 物理学报 59 5759]

    [23]

    Ganguly S, Kabir M, Sanyal B, Mookerjee A 2011 Phys. Rev. B 83 020411

    [24]

    Duan H N, Yuan S L, Zheng X F, Tian Z M 2012 Chin. Phys. B 21 078101

    [25]

    Dai S Y, Shen B G, Wang Z Q 1986 Acta. Phys. Sin. 35 657 (in Chinese) [戴守愚, 沈保根, 王忠铨 1986 物理学报 35 657]

    [26]

    Zhang K C, Song P Y 2010 Chin. Phys. B 19 097105

    [27]

    Zhang F C, Chen W R, Gong W Z, Xu B, Qiu X G, Zhao B R 2004 Chin. Phys. B 13 783

    [28]

    Wu B M, Auloos M, Du Y L, Zheng W H, Li B, Fagnard J F, Vanderbemden P 2005 Chin. Phys. Lett. 22 686

  • [1]

    Sun S, Murray C B, Weller D, Folks L, Moser A 2000 Science 287 1989

    [2]

    Sahoo S, Petracic O, Kleemann W, Stappert S, Dumpich G, Nordblad P, Cardoso, Freitas P 2003 Appl. Phys. Lett. 82 4116

    [3]

    Yang H T, Hasegawa D, Takahashi M, Ogawa T 2009 Appl. Phys. Lett. 94 013103

    [4]

    Brannon-Peppas L, Blanchette J O 2004 Adv. Drug Deliv. Rev. 56 1649

    [5]

    Gu H, Xu K, Xu C, Xu B 2006 Chem. Commun. 9 941

    [6]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [7]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [8]

    Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J 2003 Nature (London) 423 850

    [9]

    Salazar-Alvarez G, Sort J, Suriñach S, Dolors Baro M, Nogués J 2007 J. Am. Chem. Soc. 129 9102

    [10]

    Berkowitz A E, Rodriguez G F, Hong J I, An K, Hyeon T, Agarwal N, Smith D J, Fullerton E F 2008 Phys. Rev. B 77 024403

    [11]

    López-Ortega A, Tobia D, Winkler E, Golosovsky I V, Salazar-Alvarez G, Estradé S, Estrader M, Sort J M, González A, Suriñach S, Arbiol J, Peiró F, Zysler R D, Baró M D, Nogués J 2010 J. Am. Chem. Soc. 132 9398

    [12]

    Schladt T D, Graf T, Tremel W 2009 Chem. Mater. 21 3183

    [13]

    Golosovsky I V, Salazar-Alvarez G, Lpez-Ortega A, González M A, Sort J, Estrader M, Suriñach S, Bar M D, Nogués J 2009 Phys. Rev. Lett. 102 247201

    [14]

    Tang Y K, Sun Y, Cheng Z H 2006 Phys. Rev. B 73 012409

    [15]

    Tang Y K, Sun Y, Cheng Z H 2006 Phys. Rev. B 73 174419

    [16]

    Zhang X K, Tang S L, Li Y L, Du Y W 2010 Phys. Lett. A 374 2175

    [17]

    He L 2011 J. Appl. Phys. 109 123915

    [18]

    Mulder C A M, Vanduyneveldt A J, Mydosh J A 1981 Phys. Rev. B 23 1384

    [19]

    Mydosh J A 1993 Spin Glasses: An Experimental Introduction (Taylor & Francis, London)

    [20]

    Chu H F, Li J, Li S, Li S L, Wang J, Gao Y L, Deng H, Wang N, Zhang Y, Wu Y L, Zheng D N 2010 Acta. Phys. Sin. 59 6585 (in Chinese) [储海峰, 李洁, 李绍, 黎松林, 王佳, 高艳丽, 邓辉, 王宁, 张玉, 吴玉林, 郑东宁 2010 物理学报 59 6585]

    [21]

    Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393

    [22]

    Liu N, Yan G Q, Mao Q, Wang G Y, Guo H Y 2010 Acta. Phys. Sin. 59 5759 (in Chinese) [刘宁, 严国清, 毛强, 王桂英, 郭焕银 2010 物理学报 59 5759]

    [23]

    Ganguly S, Kabir M, Sanyal B, Mookerjee A 2011 Phys. Rev. B 83 020411

    [24]

    Duan H N, Yuan S L, Zheng X F, Tian Z M 2012 Chin. Phys. B 21 078101

    [25]

    Dai S Y, Shen B G, Wang Z Q 1986 Acta. Phys. Sin. 35 657 (in Chinese) [戴守愚, 沈保根, 王忠铨 1986 物理学报 35 657]

    [26]

    Zhang K C, Song P Y 2010 Chin. Phys. B 19 097105

    [27]

    Zhang F C, Chen W R, Gong W Z, Xu B, Qiu X G, Zhao B R 2004 Chin. Phys. B 13 783

    [28]

    Wu B M, Auloos M, Du Y L, Zheng W H, Li B, Fagnard J F, Vanderbemden P 2005 Chin. Phys. Lett. 22 686

  • [1] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [2] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置 . 物理学报, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [3] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [4] 杨合情, 王喧, 刘守信, 李永放, 张良莹, 姚熹. 含碳纳米颗粒凝胶玻璃的制备及其量子尺寸效应. 物理学报, 2001, 50(2): 341-346. doi: 10.7498/aps.50.341
    [5] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [6] 范巍, 曾雉. 氧化镁纳米多晶的微结构和磁性. 物理学报, 2014, 63(4): 047503. doi: 10.7498/aps.63.047503
    [7] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [8] 张开成. Sherrington-Kirkpatric自旋玻璃模型的非平衡态性质. 物理学报, 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [9] 储海峰, 李洁, 李绍, 黎松林, 王佳, 高艳丽, 邓辉, 王宁, 张玉, 吴玉林, 郑东宁. Sr2CoO4-δ薄膜中的自旋玻璃态的磁性质研究. 物理学报, 2010, 59(9): 6585-6592. doi: 10.7498/aps.59.6585
    [10] 王仕鹏, 张金仓, 曹桂新, 俞 坚, 敬 超, 曹世勋. 半掺杂Sm0.5Ca0.5MnO3体系的电荷有序和再入型自旋玻璃行为. 物理学报, 2006, 55(1): 367-371. doi: 10.7498/aps.55.367
    [11] 李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为. -Fe2O3/NiO核-壳纳米花的合成、微结构与磁性. 物理学报, 2016, 65(14): 147101. doi: 10.7498/aps.65.147101
    [12] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能. 物理学报, 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [13] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [14] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
    [15] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [16] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [17] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性. 物理学报, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [18] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. (Ni0.81Fe0.19)1-xCrx作为种子层对NiFe/FeMn交换偏置的影响. 物理学报, 2002, 51(12): 2849-2853. doi: 10.7498/aps.51.2849
    [19] 张 丽, 蒋昌忠, 任 峰, 陈海波, 石 瑛, 付 强. Ag-Cu离子注入玻璃后不同气氛退火的光吸收研究. 物理学报, 2004, 53(9): 2910-2914. doi: 10.7498/aps.53.2910
    [20] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1257
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-11
  • 修回日期:  2013-05-23
  • 刊出日期:  2013-09-05

单一晶相氧化锰纳米颗粒的交换偏置效应

  • 1. 四川师范大学物理与电子工程学院和固体物理研究所, 成都 610068;
  • 2. 中国科学院物理研究所磁学国家重点实验室, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 51071173, 11274370, 50931006, 11074179)

    科技部项目(批准号: 2012CB933102, 2011CB921801, 2010CB934202)和四川高校科研创新团队建设计划(批准号: 12TD008)资助的课题.

摘要: 本文利用高温油相法制备出尺寸、形状均一的 MnO纳米颗粒, X射线衍射图 (XRD) 和透射电子显微镜 (TEM) 照片清晰表明MnO纳米颗粒为单一的面心立方岩盐晶体结构, 尺寸为15nm, 粒径分布很窄. 通过零场冷却 (ZFC) 和带场冷却 (FC)的磁滞回线发现MnO纳米颗粒具有明显的交换偏置效应, 而且磁滞回线同时表现出横向和纵向偏移. 横向偏移说明纳米颗粒中两相复合的存在, 纵向偏移说明了存在自旋玻璃相或者超顺磁相. 进而通过不同频率下随温度变化的交流磁化率的测定, 根据Mydosh的经验数值确认 MnO纳米颗粒表面层为自旋玻璃相, 并得到 MnO纳米颗粒表面自旋玻璃相的转变温度为TSG=32K.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回