Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A low threshold single transverse mode 852 nm semiconductor laser diode

Liu Chu Guan Bao-Lu Mi Guo-Xin Liao Yi-Ru Liu Zhen-Yang Li Jian-Jun Xu Chen

Citation:

A low threshold single transverse mode 852 nm semiconductor laser diode

Liu Chu, Guan Bao-Lu, Mi Guo-Xin, Liao Yi-Ru, Liu Zhen-Yang, Li Jian-Jun, Xu Chen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A 852 nm ridge waveguide edge emitting laser has important applications. But lateral mode instability leads to its poor beam quality because of its ridge structure. Such a structure gives rise to two guidance mechanisms (gain-guide and index-guide), whose change leads to kink effect. So, the control of the single fundamental lateral mode is more difficult. There is no well-informed study in these aspects for ridge waveguide edge emitting lasers. In this paper we study how to improve the beam quality for achieving a stable fundamental lateral mode output experimentally. We are to investigate the influence of lateral mode characteristics of the laser with different ridge depth-to-width ratios in detail by waveguide theory and equivalent refractive index method. Depth and width of the ridge are two key parameters influencing lateral mode. The depth can control lateral guidance mechanism, and the width can control lateral mode order. We find that the ratio must be in a limited range to ensure the single fundamental lateral mode steady. Through theoretical analysis of waveguide theory and equivalent refractive index method, we obtain a limited range of depth-to-width ratio. Then we conduct an experimental comparison, where we adjust the ridge depth, with the width fixed, to control the ratio. Meanwhile we improve the fabrication technology to ensure the accuracy of the structure. We design and fabricate an asymmetric waveguide ridge waveguide edge emitting laser with isolation grooves, whose active region is the core of asymmetric waveguide epitaxy structure. The key structural parameters are 5 m in ridge width, 500 nm in ridge depth, 2 m in isolation grooves depth, 10 m in width, 30 m in spacing between the grooves, and 1 mm in cavity length. Isolation grooves are very useful for improving the performance of the laser: threshold decreased by 50%, output power raised by 44%, and slop efficiency increased by 17%. And the equally crucial role of grooves is to avoid being damaged at packaging process to maintain laser structure. Finally we achieve a stable single fundamental lateral mode output and an accurate tuning wavelength at 852 nm of ridge waveguide edge emitting laser without cavity surface coated at working current 150 mA, working temperature 30 ℃ (working conditions can be changed in a small range). The slope efficiency is on average 0.7 mW/mA (its maximum value is 0.89 mW/mA), and the full wave at half maximum is less than 1 nm. Although we improve the performance of ridge waveguide edge emitting laser and beam quality for stable output, there is still a need to further study the stable output over a wide range. The results in this paper will provide a useful reference for realizing the stable output ridge waveguide edge emitting lasers and the ultra-narrow line-width lasers.
      Corresponding author: Guan Bao-Lu, gbl@bjut.edu.cn
    • Funds: Project supported by the Foundation of Based Technology, China (Grant No. YXBGD20151JL01), the National Natural Science Foundation of China (Grant Nos. 61575008, 60908012, 61376049, 61076044, 61107026, 61204011), the Natural Science Foundation of Beijing, China (Grant Nos. 4172011, 4132006, 4102003, 4112006), and the Scientific Research Fund Project of Municipal Education Commission of Beijing, China (Grant No. KM201210005004).
    [1]

    Jiang L L, Achtenhagen M, Amarasinghe N V, Young P, Evans G 2009 Proc. SPIE 7230, Novel In-Plane Semiconductor Lasers VIII San Jose, California, United States, January 24, 2009 72301F

    [2]

    Luigi R, Richard M D L R, John S R, Thomas F K 2001 IEEE Photonics Technol. 13 176

    [3]

    Wang Y Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [王钰智 2014 硕士学位论文 (长春: 长春理工大学)]

    [4]

    Yan S, Anthony E S 1996 IEEE J. Quantum Electron. 32 5

    [5]

    Cook D D, Nash F R 1975 J. Appl. Phys. 46 1660

    [6]

    Krupka D, Paoli T 1975 IEEE J. Quantum Electron. 11 503

    [7]

    Kirkby P A, Thompson G H B 1973 Appl. Phys. Lett. 22 638

    [8]

    Du S L 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [杜石磊 2011 硕士学位论文 (长春: 长春理工大学)]

    [9]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L 2013 Optics and Precision Engineering 21 590 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉 2013 光学精密工程 21 590]

    [10]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L, Liu Y, Wang L J 2012 Chin. J. Lumin. 33 6 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉, 刘云, 王立军 2012 发光学报 33 6]

    [11]

    Xu H W 2012 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physic, Chinese Academy of Sciences, China) (in Chinese) [徐华伟 2012 博士学位论文 (长春: 中科院长春光学精密机械与物理研究所)]

    [12]

    Masanobu W, Seiji M, Hideo I, Hiroyoshi Y 1990 J. Appl. Phys. 68 2599

    [13]

    Zhang X 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [张秀 2011 硕士学位论文 (长春: 长春理工大学)]

    [14]

    Richard A S, Joachim S, Klaus P 1991 IEEE J. Quantum Electron. 27 8

    [15]

    Cao S S 1996 Laser Technol. 20 3 (in Chinese) [曹三松 1996 激光技术 20 3]

    [16]

    Seiji M, Hiroyoshi Y 1984 IEEE J. Quantum Electron. QE-20 7

    [17]

    Jerome K B, Dan B 1984 IEEE J. Quantum Electron. QE-20 879

    [18]

    Reynolds C L, Holbrook W R, Shimer J A, Tharaldsen S M, Agrawal G P, Temkin H 1986 Electron. Lett. 22 1290

    [19]

    Zhang S, Liu S J, Cui B F, Li J J, Ji W, Chen J X, Wang X L, Su D J, Li J C 2014 Semicond. Opt. 35 1 (in Chinese) [张松, 刘素娟, 崔碧峰, 李建军, 计伟, 陈京湘, 王晓玲, 苏道军, 李佳莼 2014 半导体光电 35 1]

    [20]

    Zhang S 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese) [张松 2014 硕士学位论文 (北京: 北京工业大学)]

  • [1]

    Jiang L L, Achtenhagen M, Amarasinghe N V, Young P, Evans G 2009 Proc. SPIE 7230, Novel In-Plane Semiconductor Lasers VIII San Jose, California, United States, January 24, 2009 72301F

    [2]

    Luigi R, Richard M D L R, John S R, Thomas F K 2001 IEEE Photonics Technol. 13 176

    [3]

    Wang Y Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [王钰智 2014 硕士学位论文 (长春: 长春理工大学)]

    [4]

    Yan S, Anthony E S 1996 IEEE J. Quantum Electron. 32 5

    [5]

    Cook D D, Nash F R 1975 J. Appl. Phys. 46 1660

    [6]

    Krupka D, Paoli T 1975 IEEE J. Quantum Electron. 11 503

    [7]

    Kirkby P A, Thompson G H B 1973 Appl. Phys. Lett. 22 638

    [8]

    Du S L 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [杜石磊 2011 硕士学位论文 (长春: 长春理工大学)]

    [9]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L 2013 Optics and Precision Engineering 21 590 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉 2013 光学精密工程 21 590]

    [10]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L, Liu Y, Wang L J 2012 Chin. J. Lumin. 33 6 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉, 刘云, 王立军 2012 发光学报 33 6]

    [11]

    Xu H W 2012 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physic, Chinese Academy of Sciences, China) (in Chinese) [徐华伟 2012 博士学位论文 (长春: 中科院长春光学精密机械与物理研究所)]

    [12]

    Masanobu W, Seiji M, Hideo I, Hiroyoshi Y 1990 J. Appl. Phys. 68 2599

    [13]

    Zhang X 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [张秀 2011 硕士学位论文 (长春: 长春理工大学)]

    [14]

    Richard A S, Joachim S, Klaus P 1991 IEEE J. Quantum Electron. 27 8

    [15]

    Cao S S 1996 Laser Technol. 20 3 (in Chinese) [曹三松 1996 激光技术 20 3]

    [16]

    Seiji M, Hiroyoshi Y 1984 IEEE J. Quantum Electron. QE-20 7

    [17]

    Jerome K B, Dan B 1984 IEEE J. Quantum Electron. QE-20 879

    [18]

    Reynolds C L, Holbrook W R, Shimer J A, Tharaldsen S M, Agrawal G P, Temkin H 1986 Electron. Lett. 22 1290

    [19]

    Zhang S, Liu S J, Cui B F, Li J J, Ji W, Chen J X, Wang X L, Su D J, Li J C 2014 Semicond. Opt. 35 1 (in Chinese) [张松, 刘素娟, 崔碧峰, 李建军, 计伟, 陈京湘, 王晓玲, 苏道军, 李佳莼 2014 半导体光电 35 1]

    [20]

    Zhang S 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese) [张松 2014 硕士学位论文 (北京: 北京工业大学)]

  • [1] Wang Wu-Yue, Yu Yu, Li Yun-Fei, Wang Gong, Li Kai, Wang Zhi-Yong, Song Chang-Yu, Li Sen-Sen, Li Yu-Hai, Liu Tong-Yu, Yan Xiu-Sheng, Wang Yu-Lei, Lü Zhi-Wei. Ridge-type suspended waveguide Brillouin laser. Acta Physica Sinica, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [2] Kang Da, Luo Bin, Yan Lian-Shan, Pan Wei, Zou Xi-Hua. Supperssion of higher order modes in gain-guided index-antiguided planar waveguide laser. Acta Physica Sinica, 2018, 67(10): 104204. doi: 10.7498/aps.67.20180138
    [3] An Ran, Fan Xiao-Zhen, Lu Jian-Xin, Wen Qiao. Design and experimental study on high quality beam and high stability power of laser. Acta Physica Sinica, 2018, 67(7): 074201. doi: 10.7498/aps.67.20171932
    [4] Zhou Ya, Wu Zheng-Mao, Fan Li, Sun Bo, He Yang, Xia Guang-Qiong. Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection. Acta Physica Sinica, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [5] Shen Wen-Yuan, Wang Hu, Geng Zhi-Hui, Du Chao-Hai, Liu Pu-Kun. Study of a W-band TE62 mode generator by the waveguide mode transformation. Acta Physica Sinica, 2013, 62(23): 238403. doi: 10.7498/aps.62.238403
    [6] Xu Yong-Gen, Wang Shi-Jian, Ji Yu-Pin, Xu Jing-Yue, Lu Hong, Liu Xiao-Xu, Zhang Shi-Chang. Comparative study of relativistic electron motion stability in a Raman free-electron laser. Acta Physica Sinica, 2013, 62(8): 084104. doi: 10.7498/aps.62.084104
    [7] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [8] Ji Hai-Ming, Cao Yu-Lian, Yang Tao, Ma Wen-Quan, Cao Qing, Chen Liang-Hui. Characteristic study of maximum modal gain of p-doped 1.3 μm InAs/GaAs quantum dot lasers. Acta Physica Sinica, 2009, 58(3): 1896-1900. doi: 10.7498/aps.58.1896
    [9] Liu Yan-Fen, Liu Jing-Hui, Jia Cheng. Retarded modes of lateral ferromagnetic/ferromagnetic superlattice. Acta Physica Sinica, 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [10] Zhang Qiu-Lin, Su Hong-Xin, Sun Jiang, Guo Qing-Lin, Fu Guang-Sheng. Stability of LD pumped passively Q-switched solid-state lasers. Acta Physica Sinica, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [11] Feng Guo-Lin, Dong Wen-Jie, Li Jian-Ping, Chou Ji-Fan. On the stability of the difference scheme in the self-memorization model. Acta Physica Sinica, 2004, 53(7): 2389-2395. doi: 10.7498/aps.53.2389
    [12] JIAO WEN-TAO, XIN JIANGUO. EXPERIMENTAL STUDY ON A RF-EXCTTED SLAB WAVEGUIDE CO2 LASER WITH THE FAR FIELD INTENSITY DISTRIBUTION OF A SINGLE SUPPRESSED PEAK. Acta Physica Sinica, 1999, 48(10): 1875-1883. doi: 10.7498/aps.48.1875
    [13] HE KAI-FEN. FURTHER EXPLORATION ON THE EFFECT OFNEGATIVE-ENERGY MODES IN THENONLINEAR INSTABILITIES. Acta Physica Sinica, 1996, 45(1): 1-12. doi: 10.7498/aps.45.1
    [14] HE KAI-FEN, HU GANG. THE EFFECT OF NEGATIVE-ENERGY MODE ON NONLINEAR INSTABILITY IN DRIVEN DRIFT WAVES (I)——TRANSITION TO POSITIVE-ENERGY MODE AND THE BISTABILITY. Acta Physica Sinica, 1993, 42(7): 1035-1041. doi: 10.7498/aps.42.1035
    [15] HE KAI-FEN, HU GANG. THE EFFECT OF NEGATIVE ENERGY MODE ON NONLINEAR INSTABILITY IN DRIVEN DRIFT WAVES (Ⅱ)——EXCHANGE WITH POSITIVE-ENERGY MODE,‘AVOIDED-CROSSING' AND THE HOPF BIFURCATION. Acta Physica Sinica, 1993, 42(7): 1042-1049. doi: 10.7498/aps.42.1042
    [16] ZHANG LI-GEN, CHEN NAN-PENG, BA EN-XU. EFFECTS OF LIGHT FEEDBACK ON CO2 LASER INSTABILITIES. Acta Physica Sinica, 1990, 39(2): 183-189. doi: 10.7498/aps.39.183
    [17] WANG SHOU-WU, WANG QI-MING, LIN SHI-MING. STUDY OF THE INSTABILITY OF BISTABLE INJECTION LASERS. Acta Physica Sinica, 1986, 35(8): 1095-1101. doi: 10.7498/aps.35.1095
    [18] PAN SHAO-HUA. A SEMICLASSICAL THEORY OF MODE COUPLING IN DYE LASERS. Acta Physica Sinica, 1981, 30(8): 1067-1076. doi: 10.7498/aps.30.1067
    [19] HO YU-PING. OUTPUT STABILITY OF LASERS. Acta Physica Sinica, 1964, 20(10): 954-969. doi: 10.7498/aps.20.954
    [20] PENG-FEI HSU, PING-CHUAN FENG. STUDY OF FREQUENCY STABILITY OF ELECTRON- COUPLED OSCILLATORS. Acta Physica Sinica, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
Metrics
  • Abstract views:  5726
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2016
  • Accepted Date:  30 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回