Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tri-level resistive switching characteristics and conductive mechanism of HfO2/NiOx/HfO2 stacks

Chen Tao Zhang Tao Yin Yuan-Xiang Xie Yu-Sha Qiu Xiao-Yan

Citation:

Tri-level resistive switching characteristics and conductive mechanism of HfO2/NiOx/HfO2 stacks

Chen Tao, Zhang Tao, Yin Yuan-Xiang, Xie Yu-Sha, Qiu Xiao-Yan
PDF
HTML
Get Citation
  • With the extensive integration of portable computers and smartphones with “Internet of Things” technology, further miniaturization, high reading/writing speed and big storage capacity are required for the new-generation non-volatile memory devices. Compared with traditional charge memory and magnetoresistive memory, resistive random access memory (RRAM) based on transition metal oxides is one of the promising candidates due to its low power consumption, small footprint, high stack ability, fast switching speed and multi-level storage capacity.Inspired by the excellent resistive switching characteristics of NiO and HfO2, NiOx films are deposited by magnetron sputtering on the Pt$\langle111\rangle $ layer and the polycrystalline HfO2 film, respectively. Their microstructures, resistive switching characteristics and conductive mechanisms are studied. X-ray diffractometer data show the $\langle111\rangle $ preferred orientation for the NiOx film deposited on the Pt$\langle111\rangle $ layer but the $\langle100\rangle $ preferred one for the film deposited on the polycrystalline HfO2 layer. X-ray photoelectron depth profile of Ni 2p core level reveals that the NiOx film is the mixture of oxygen-deficient NiO and Ni2O3. NiOx(111) films show bipolar resistive switching (RS) characteristics with a clockwise current-voltage (I-V) loop, but its ratio of the high resistance to the low resistance (RH/RL) is only ~10, and its endurance is also poor. The NiOx(200)/HfO2 stack exhibits bipolar RS characteristics with a counterclockwise I-V loop. The RH/RL is greater than 104, the endurance is about 104 cycles, and the retention time exceeds 104 s. In the initial stage, the HfO2/NiOx(200)/HfO2 stack shows similar bi-level RS characteristics to the NiOx(200)/HfO2 stack. However, in the middle and the last stages, its I-V curves gradually evolve into tri-level RS characteristics with a “two-step Setting process” in the positive voltage region, showing potential applications in multilevel nonvolatile memory devices and brain-like neural synapses. Its I-V curves in the high and the low resistance state follow the relationship of ohmic conduction ($ I \propto V $), while the I-V curves in the intermediate resistance state are dominated by the space-charge-limited-current mechanism ($ I \propto V^2 $). The tri-level RS phenomena are attributed to the coexistence of the oxygen-vacancy conductive filaments in the NiOx(200) film and the space charge limited current in the upper HfO2 film.
      Corresponding author: Qiu Xiao-Yan, qxy2001@swu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxm X0451).
    [1]

    Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 1066Google Scholar

    [2]

    Zhou G D, Ji X Y, Li J, Zhou F C, Dong Z K, Yan B T, Sun B, Wang W H, Hu X F, Song Q L, Wang L D, Duan S K 2022 iScience 25 105240Google Scholar

    [3]

    Zhou G D, Sun B, Hu X F, Sun L F, Zou Z, Xiao B, Qiu W K, Wu B, Li J, Han J J, Liao L P, Xu C Y, Xiao G, Xiao L H, Cheng J B, Zheng S H, Wang L D, Song Q L, Duan S K 2021 Adv. Sci. 8 2003765Google Scholar

    [4]

    朱玮, 郭恬恬, 刘兰, 周荣荣 2021 物理学报 70 068502Google Scholar

    Zhu W, Guo T T, Liu L, Zhou R R 2021 Acta Phys. Sin. 70 068502Google Scholar

    [5]

    Gibbons J F, Beadle W E 1964 Solid-State Electron. 7 785Google Scholar

    [6]

    Wang G Y, Hu L, Xia Y D, Li Q, Xu Q Y 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [7]

    Xia W Y, Sun X W, Yin Y F, Jia C H, Li G Q, Zhang W F 2020 AIP Adv. 10 105319Google Scholar

    [8]

    Chu J X, Li Y, Fan X H, Shao H H, Duan W J, Pei Y L 2018 Semicond. Sci. Technol. 33 115007Google Scholar

    [9]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504Google Scholar

    [10]

    Yuan X C, Wei X H, Dai B, Zeng H Z 2016 Appl. Surf. Sci. 362 506Google Scholar

    [11]

    D'Aquila K, Liu Y Z, Iddir H, Petford-Long A K 2015 Phys. Status Solidi RRL 9 301Google Scholar

    [12]

    Lee S, Kim D, Eom H, Kim W B, Yoo B 2014 Jpn. J. Appl. Phys. 53 024202Google Scholar

    [13]

    Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar

    [14]

    Li J C, Hou X Y, Cao Q 2014 J. Appl. Phys. 115 164507Google Scholar

    [15]

    Kim J, Na H, Lee S, Sung Y H, Yoo J H, Lee D S, Ko D H, Sohn H 2011 Curr. Appl. Phys. 11 e70Google Scholar

    [16]

    Kim J, Lee K, Sohn H 2009 J. Electrochem. Soc. 156 H881Google Scholar

    [17]

    Ma G K, Tang X L, Zhang H W, Zhong Z Y, Li X, Li J, Su H 2017 J. Mater. Sci. 52 238Google Scholar

    [18]

    Huang Y C, Chen P Y, Chin T S, Liu R S, Huang C Y, Lai C H 2012 Appl. Phys. Lett. 101 153106Google Scholar

    [19]

    Kim D C, Lee M J, Ahn S E, Seo S, Park J C, Yoo I K, Beak I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T, Ryu B I 2006 Appl. Phys. Lett. 88 232106Google Scholar

    [20]

    Qiu X Y, Wang R X, Zhang Z, Wei M L, Ji H, Chai Y, Zhou F C, Dai J Y, Zhang T, Li L T, Meng X S 2017 Appl. Phys. Lett. 111 142103Google Scholar

    [21]

    Chen X M, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. A-Mater. Sci. Process. 104 477Google Scholar

    [22]

    Li S, Wei X H, Lei Y, Yuan X C, Zeng H Z 2016 Appl. Surf. Sci. 389 977Google Scholar

    [23]

    Zhang T, Zhang Z, Chan C H, Li L T, Wei M L, Meng X S, Dai J Y, Qiu X Y 2018 J. Phys. D: Appl. Phys. 51 305105Google Scholar

    [24]

    Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575Google Scholar

    [25]

    Park M, Jeon B, Park J, Kim S 2022 Nanomaterials 12 4206Google Scholar

    [26]

    Chen Y J, Chang K C, Chang T C, Chen H L, Young T F, Tsai T M, Zhang R, Chu T J, Ciou J F, Lou J C, Chen K H, Chen J H, Zheng J C, Sze S M 2014 IEEE Electron Device Lett. 35 1016Google Scholar

    [27]

    Yan X Y, Wang X T, Wang D, et al. 2020 Nanotechnology 31 115209Google Scholar

    [28]

    Yin Y X, Xie Y S, Chen T, Xiang Y J, Zhou K, Qiu X Y 2023 Appl. Surf. Sci. 613 155994Google Scholar

    [29]

    Qiu X Y, Wang R X, Li G Q, et al. 2017 Appl. Surf. Sci. 406 212Google Scholar

    [30]

    Kim K S, Winograd N 1974 Surf. Sci. 43 625Google Scholar

    [31]

    Khan M Q, Ahmad K, Alsalme A, Kim H 2022 Mater. Chem. Phys. 289 126463Google Scholar

    [32]

    Smolarek M, Kierzkowska-Pawlak H, Kapica R, Fronczak M, Sitarz M, Lesniak M, Tyczkowski J 2021 Catalysts 11 905Google Scholar

    [33]

    Luo J M, Zhang H N, Chen S H, Yang X D, Bu S L, Wen J P 2016 Chem. Phys. Lett. 652 98Google Scholar

    [34]

    潘峰, 陈超 2014 阻变存储器材料与器件 (北京: 科学出版社) 第43页

    Pan F, Chen C 2014 Resistive Random Access Memory Materials and Devices (Beijing: Science Press) p43 (in Chinese)

    [35]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (America: John Wiley & Sons, Inc.) p227

    [36]

    Siddik A, Halder P K, Garu P, et al. 2020 J. Phys. D: Appl. Phys. 53 295103Google Scholar

    [37]

    Li Y, Fang P W, Fan X H, Pei Y L 2020 Semicond. Sci. Technol. 35 055004Google Scholar

    [38]

    Zhang W, Lei J Z, Dai Y X, Zhang X H, Kang L M, Peng B W, Hu F R 2022 Nanotechnology 33 255703Google Scholar

    [39]

    Li Z H, Li J C, Cui H P 2021 J. Alloys Compd. 858 158091Google Scholar

    [40]

    Ismail M, Chand U, Mahata C, Nebhen J, Kim S 2022 J. Mater. Sci. Technol. 96 94Google Scholar

    [41]

    Wang W, Covi E, Lin Y H, et al. 2021 IEEE Trans. Electron Devices 68 4342Google Scholar

    [42]

    Hong D S, Wang W X, Chen Y S, Sun J R, Shen B G 2014 Appl. Phys. Lett. 105 113504Google Scholar

    [43]

    Yuan F, Shen S S, Zhang Z G, Pan L Y, Xu J 2016 Superlattices Microstruct. 91 90Google Scholar

    [44]

    Razi P M, Angappane S, Gangineni R B 2021 Mater. Sci. Eng. B-Adv. 263 114852Google Scholar

    [45]

    Sun B, Zhang X J, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

  • 图 1  (a) Ag/HfO2/NiOx/HfO2/Pt-Si堆栈器件结构示意图; (b) 沉积在Pt-Si衬底上的NiOx薄膜, NiOx/HfO2和HfO2/NiOx/HfO2堆栈样品的XRD谱

    Figure 1.  (a) Schematic diagram of the Ag/HfO2/NiOx/HfO2/Pt-Si stack; (b) XRD spectra of the NiOx film, NiOx/HfO2 and HfO2/NiOx/HfO2 stacks on Pt coated Si (Pt-Si) substrates.

    图 2  择优取向的(a) NiOx $\langle111\rangle $和(b) NiOx $\langle100\rangle $薄膜SEM照片和粒径分布统计图(右上插图)

    Figure 2.  Top-view SEM images and particle size distributions (upper-right insets) of NiOx films with the preferred (a) $\langle111\rangle $ and (b) $\langle100\rangle $ orientations, respectively.

    图 3  HfO2/NiOx/HfO2堆栈样品横截面的(a) SEM照片, (b) EDS面扫描总谱以及(c) Ni, (d) O, (e) Pt和(f) Si元素的面分布图. 图(b)中插图为Ni, O, Pt和Hf元素的原子百分含量柱状图

    Figure 3.  (a) Cross-sectional SEM image, (b) EDS spectrum, and EDS maps of (c) Ni, (d) O, (e) Pt and (f) Si elements for the HfO2/NiOx/HfO2 stack on the Pt-Si substrate. Inset in Fig.(b) shows the atomic percent of Ni, O, Pt, and Hf elements in the sample.

    图 4  (a) 沉积在Pt-Si衬底上的HfO2/NiOx/HfO2堆栈横截面的HRTEM照片; 图(a)中的(b) HfO2/NiOx界面局部区域(红色方框标注)和(c) NiOx/HfO2/Pt局部区域(白色方框标注)的高倍数HRTEM照片

    Figure 4.  (a) HRTEM images for the cross sectional HfO2/NiOx/HfO2 stack on Pt-Si substrate. Magnified HRTEM images for (b) the HfO2/NiOx and (c) the NiOx/HfO2/Pt interfaces marked with the red and the white boxes in Fig.(a), respectively.

    图 5  HfO2/NiOx/HfO2堆栈中Hf, Ni, Pt和O的原子百分含量随刻蚀次数的变化

    Figure 5.  Variations of the atomic percent for Hf, Ni, Pt, and O in the HfO2/NiOx/HfO2 stack with etching times.

    图 6  HfO2/NiOx/HfO2堆栈样品的(a) Pt 4f, (b) Hf 4f和(c) Ni 2p核心能级的XPS深度剖析谱

    Figure 6.  XPS depth profiles of (a) Pt 4f, (b) Hf 4f and (c) Ni 2p core levels for the HfO2/NiOx/HfO2 stack.

    图 7  P1, P2和P3峰面积百分比随刻蚀次数的变化

    Figure 7.  Variations of the peak area percentage for P1, P2, and P3 sub-peaks with etching times.

    图 8  HfO2/NiOx/HfO2堆栈器件的电阻开关特性 (a) I-V回线; (b) 0.1 V电压读取的高电阻态, 中间电阻态和低电阻态阻值随循环周期数的变化; (c) VSet1, VSet2VReset的累积概率分布以及(d) 器件在高(低)电阻态的持续时间

    Figure 8.  Resistive switching properties of the HfO2/NiOx/HfO2 stack: (a) I-V loops; (b) variations of resistance for the HRS, IRS and LRS with the cycle number at the reading voltage of 0.1 V; (c) cumulative probability distributions of VSet1, VSet2 and VReset; (d) retention time of the HRS and the LRS.

    图 9  (a), (b) NiOx薄膜, (c), (d) NiOx/HfO2和(e)—(h) HfO2/NiOx/HfO2堆栈在对数-线性坐标中的I-V回线及其在双对数坐标中绘制的Set过程附近的I-V曲线

    Figure 9.  I-V loops in logarithmic-linear scale and replotted I-V curves in double-logarithmic scale near the Set process of RRAM cells based on (a), (b) NiOx films, (c), (d) NiOx/HfO2 and (e)–(h) HfO2/NiOx/HfO2 stacks, respectively.

    图 10  HfO2/NiOx/HfO2堆栈器件电阻开关微观机制示意图 (a) 扩散过程; (b) Set1过程; (c) Set2过程; (d) Reset过程

    Figure 10.  Schematic illustrations of the resistive switching mechanism for the HfO2/NiOx/HfO2 stack in the (a) diffusion; (b) Set1; (c) Set2 and (d) Reset processes

    表 1  Ag/HfO2/NiOx/HfO2/Pt堆栈器件的制备工艺参数

    Table 1.  Preparation parameters of the Ag/HfO2/NiOx/HfO2/Pt stack.

    成分溅射源
    (99.99%纯度)
    生长气氛
    流量(比)
    衬底
    温度/℃
    溅射方式
    功率/W, 偏压/V
    生长
    时间/min
    退火气氛
    流量(比)
    退火
    温度/℃
    退火
    时间/min
    Pt金属层Pt金属靶2.7 Pa Ar+O2
    Ar∶O2 = 17∶3
    700直流
    25, 0
    5
    HfO2薄膜HfO2陶瓷靶3 Pa Ar
    30 sccm
    350射频
    70, 0
    203 Pa O2
    30 sccm
    35030
    NiOx薄膜Ni金属靶0.5 Pa Ar+O2
    Ar∶O2 = 4∶1
    700射频
    60, 0
    900.5 Pa Ar+O2
    Ar∶O2 = 4∶1
    70030
    Ag电极Ag金属靶0.5 Pa Ar
    30 sccm
    250直流
    25, –100
    10
    注: sccm为cm3/min.
    DownLoad: CSV

    表 2  各种氧化物/NiOx堆栈RRAM器件的电阻开关性能参数

    Table 2.  Resistive switching parameters of RRAM cells based on various oxide/NiOx stacks.

    Cell structureSwitching typeVSet/VVReset/VRH/RLEnduranceRetention/sRef.
    NiFe/Al2O3/NiO/PtUnipolar2.30—4.200.55—1.50~1×103>1×1021×104[6]
    Pt/IrO2/NiO/IrO2/PtUnipolar1.430.41> 1×1022×102[19]
    Ag/HfO2/NiO/PtBipolar0.20–0.20> 1×103> 5×103> 1×103[20]
    Pt/NiO/Mg0.6Zn0.4O/PtRectifying0.54—0.62~1×1061×1026×104[21]
    Au/BaTiO3/NiO/PtUnipolar2.001.00[22]
    Ag/HfO2/nb-NiO/PtBipolar0.16—0.38–0.19— –0.38~1×1041.2×103>1×104[28]
    Pt/BiFeO3/NiO/PtBipolar1.00—1.50–0.20— –0.60> 1030[33]
    Ag/NiOx/HfO2/PtBipolar0.12—0.18–0.02— –0.17> 1×104~1×104> 1×104Reference cell
    Ag/HfO2/NiOx/HfO2/PtBipolarSet1: 0.13—0.17–0.03— –0.17~1×105> 3×103~1×104This work
    Set2: 0.21—0.40~1×102
    DownLoad: CSV
  • [1]

    Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 1066Google Scholar

    [2]

    Zhou G D, Ji X Y, Li J, Zhou F C, Dong Z K, Yan B T, Sun B, Wang W H, Hu X F, Song Q L, Wang L D, Duan S K 2022 iScience 25 105240Google Scholar

    [3]

    Zhou G D, Sun B, Hu X F, Sun L F, Zou Z, Xiao B, Qiu W K, Wu B, Li J, Han J J, Liao L P, Xu C Y, Xiao G, Xiao L H, Cheng J B, Zheng S H, Wang L D, Song Q L, Duan S K 2021 Adv. Sci. 8 2003765Google Scholar

    [4]

    朱玮, 郭恬恬, 刘兰, 周荣荣 2021 物理学报 70 068502Google Scholar

    Zhu W, Guo T T, Liu L, Zhou R R 2021 Acta Phys. Sin. 70 068502Google Scholar

    [5]

    Gibbons J F, Beadle W E 1964 Solid-State Electron. 7 785Google Scholar

    [6]

    Wang G Y, Hu L, Xia Y D, Li Q, Xu Q Y 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [7]

    Xia W Y, Sun X W, Yin Y F, Jia C H, Li G Q, Zhang W F 2020 AIP Adv. 10 105319Google Scholar

    [8]

    Chu J X, Li Y, Fan X H, Shao H H, Duan W J, Pei Y L 2018 Semicond. Sci. Technol. 33 115007Google Scholar

    [9]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504Google Scholar

    [10]

    Yuan X C, Wei X H, Dai B, Zeng H Z 2016 Appl. Surf. Sci. 362 506Google Scholar

    [11]

    D'Aquila K, Liu Y Z, Iddir H, Petford-Long A K 2015 Phys. Status Solidi RRL 9 301Google Scholar

    [12]

    Lee S, Kim D, Eom H, Kim W B, Yoo B 2014 Jpn. J. Appl. Phys. 53 024202Google Scholar

    [13]

    Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar

    [14]

    Li J C, Hou X Y, Cao Q 2014 J. Appl. Phys. 115 164507Google Scholar

    [15]

    Kim J, Na H, Lee S, Sung Y H, Yoo J H, Lee D S, Ko D H, Sohn H 2011 Curr. Appl. Phys. 11 e70Google Scholar

    [16]

    Kim J, Lee K, Sohn H 2009 J. Electrochem. Soc. 156 H881Google Scholar

    [17]

    Ma G K, Tang X L, Zhang H W, Zhong Z Y, Li X, Li J, Su H 2017 J. Mater. Sci. 52 238Google Scholar

    [18]

    Huang Y C, Chen P Y, Chin T S, Liu R S, Huang C Y, Lai C H 2012 Appl. Phys. Lett. 101 153106Google Scholar

    [19]

    Kim D C, Lee M J, Ahn S E, Seo S, Park J C, Yoo I K, Beak I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T, Ryu B I 2006 Appl. Phys. Lett. 88 232106Google Scholar

    [20]

    Qiu X Y, Wang R X, Zhang Z, Wei M L, Ji H, Chai Y, Zhou F C, Dai J Y, Zhang T, Li L T, Meng X S 2017 Appl. Phys. Lett. 111 142103Google Scholar

    [21]

    Chen X M, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. A-Mater. Sci. Process. 104 477Google Scholar

    [22]

    Li S, Wei X H, Lei Y, Yuan X C, Zeng H Z 2016 Appl. Surf. Sci. 389 977Google Scholar

    [23]

    Zhang T, Zhang Z, Chan C H, Li L T, Wei M L, Meng X S, Dai J Y, Qiu X Y 2018 J. Phys. D: Appl. Phys. 51 305105Google Scholar

    [24]

    Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575Google Scholar

    [25]

    Park M, Jeon B, Park J, Kim S 2022 Nanomaterials 12 4206Google Scholar

    [26]

    Chen Y J, Chang K C, Chang T C, Chen H L, Young T F, Tsai T M, Zhang R, Chu T J, Ciou J F, Lou J C, Chen K H, Chen J H, Zheng J C, Sze S M 2014 IEEE Electron Device Lett. 35 1016Google Scholar

    [27]

    Yan X Y, Wang X T, Wang D, et al. 2020 Nanotechnology 31 115209Google Scholar

    [28]

    Yin Y X, Xie Y S, Chen T, Xiang Y J, Zhou K, Qiu X Y 2023 Appl. Surf. Sci. 613 155994Google Scholar

    [29]

    Qiu X Y, Wang R X, Li G Q, et al. 2017 Appl. Surf. Sci. 406 212Google Scholar

    [30]

    Kim K S, Winograd N 1974 Surf. Sci. 43 625Google Scholar

    [31]

    Khan M Q, Ahmad K, Alsalme A, Kim H 2022 Mater. Chem. Phys. 289 126463Google Scholar

    [32]

    Smolarek M, Kierzkowska-Pawlak H, Kapica R, Fronczak M, Sitarz M, Lesniak M, Tyczkowski J 2021 Catalysts 11 905Google Scholar

    [33]

    Luo J M, Zhang H N, Chen S H, Yang X D, Bu S L, Wen J P 2016 Chem. Phys. Lett. 652 98Google Scholar

    [34]

    潘峰, 陈超 2014 阻变存储器材料与器件 (北京: 科学出版社) 第43页

    Pan F, Chen C 2014 Resistive Random Access Memory Materials and Devices (Beijing: Science Press) p43 (in Chinese)

    [35]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (America: John Wiley & Sons, Inc.) p227

    [36]

    Siddik A, Halder P K, Garu P, et al. 2020 J. Phys. D: Appl. Phys. 53 295103Google Scholar

    [37]

    Li Y, Fang P W, Fan X H, Pei Y L 2020 Semicond. Sci. Technol. 35 055004Google Scholar

    [38]

    Zhang W, Lei J Z, Dai Y X, Zhang X H, Kang L M, Peng B W, Hu F R 2022 Nanotechnology 33 255703Google Scholar

    [39]

    Li Z H, Li J C, Cui H P 2021 J. Alloys Compd. 858 158091Google Scholar

    [40]

    Ismail M, Chand U, Mahata C, Nebhen J, Kim S 2022 J. Mater. Sci. Technol. 96 94Google Scholar

    [41]

    Wang W, Covi E, Lin Y H, et al. 2021 IEEE Trans. Electron Devices 68 4342Google Scholar

    [42]

    Hong D S, Wang W X, Chen Y S, Sun J R, Shen B G 2014 Appl. Phys. Lett. 105 113504Google Scholar

    [43]

    Yuan F, Shen S S, Zhang Z G, Pan L Y, Xu J 2016 Superlattices Microstruct. 91 90Google Scholar

    [44]

    Razi P M, Angappane S, Gangineni R B 2021 Mater. Sci. Eng. B-Adv. 263 114852Google Scholar

    [45]

    Sun B, Zhang X J, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

  • [1] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] Yuan Guo-Liang, Wang Chen-Hao, Tang Wen-Bin, Zhang Rui, Lu Xu-Bing. Structure, performance regulation and typical device applications of HfO2-based ferroelectric films. Acta Physica Sinica, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [3] Shi Zhi-Xin, Zhou Da-Yu, Li Shuai-Dong, Xu Jin, Uwe Schröder. First-order reversal curve diagram and its application in investigation of polarization switching behavior of HfO2-based ferroelectric thin films. Acta Physica Sinica, 2021, 70(12): 127702. doi: 10.7498/aps.70.20210115
    [4] Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li. Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits. Acta Physica Sinica, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [5] Dai Guang-Zhen, Jiang Yong-Zhao, Ni Tian-Ming, Liu Xin, Lu Lin, Liu Qi. First principles study of effect of vaiable component Al on HfO2 resistance. Acta Physica Sinica, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [6] Li Chao, Yao Yuan, Yang Yang, Shen Xi, Gao Bin, Huo Zong-Liang, Kang Jin-Feng, Liu Ming, Yu Ri-Cheng. In situ transmission electron microscopy studies on nanomaterials and HfO2-based storage nanodevices. Acta Physica Sinica, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [7] Zhu Le-Yong, Gao Ya-Na, Zhang Jian-Hua, Li Xi-Feng. High mobility thin-film transistor with solution-processed hafnium-oxide dielectric and zinc-indium-tin-oxide semiconductor. Acta Physica Sinica, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [8] Jiang Xian-Wei, Dai Guang-Zhen, Lu Shi-Bin, Wang Jia-Yu, Dai Yue-Hua, Chen Jun-Ning. Effect of Al doping on the reliability of HfO2 as a trapping layer: First-principles study. Acta Physica Sinica, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [9] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [10] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [11] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [12] Pang Hua, Deng Ning. Electric characteristics and resistive switching mechanism of Ni/HfO2/Pt resistive random access memory cell. Acta Physica Sinica, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [13] Zhou Da-Yu, Xu Jin. Ferroelectric and antiferroelectric properties of Si-doped HfO2 thin films. Acta Physica Sinica, 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [14] Xu Xiang-Dong, Liu Ying, Qiu Ke-Qiang, Liu Zheng-Kun, Hong Yi-Lin, Fu Shao-Jun. Ion beam etching for multilayer dielectric pulse compressor gratings with top layers of HfO2. Acta Physica Sinica, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [15] Huang Yue, Gou Hong-Yan, Liao Zhong-Wei, Sun Qing-Qing, Zhang Wei, Ding Shi-Jin. Investigation on memory effect of MOS capacitors with Al2O3/Pt-nanocrystals/HfO2. Acta Physica Sinica, 2010, 59(3): 2057-2063. doi: 10.7498/aps.59.2057
    [16] Xu Jun, Huang Yu-Jian, Ding Shi-Jin, Zhang Wei. Influence of Ta and TaN bottom electrodes on electrical performances of MIM capacitors with atomic-layer-deposited HfO2 dielectric. Acta Physica Sinica, 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [17] Cen Min, Zhang Yue-Guang, Chen Wei-Lan, Gu Pei-Fu. Influences of deposition rate and oxygen partial pressure on residual stress of HfO2 films. Acta Physica Sinica, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [18] Sa Ning, Kang Jin-Feng, Yang Hong, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Negative bias temperature instability of HfN/HfO2 gated p-MOSFETs. Acta Physica Sinica, 2006, 55(3): 1419-1423. doi: 10.7498/aps.55.1419
    [19] Lu Hong-Liang, Xu Min, Chen Wei, Ren Jie, Ding Shi-Jin, Zhang Wei. Geometries and the electronic structures of t-HfO2 (001) surface. Acta Physica Sinica, 2006, 55(3): 1374-1378. doi: 10.7498/aps.55.1374
    [20] Yan Zhi-Jun, Wang Yin-Yue, Xu Run, Jiang Zui-Min. Structural characteristics of HfO2 films grown by e-beam evaporation. Acta Physica Sinica, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
Metrics
  • Abstract views:  1764
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2023
  • Accepted Date:  28 April 2023
  • Available Online:  12 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回