Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning

Junsong He Feng Luo Jian Wang Shiguan Yang Lin Cheng Lijun Zhai Hongxia Liu Yan Zhang Yanli Li Zhigang Sun Jifan Hu

Citation:

Thermoelectric properties of Co doped TiNiCoxSn alloys fabricated by melt spinning

Junsong He, Feng Luo, Jian Wang, Shiguan Yang, Lin Cheng, Lijun Zhai, Hongxia Liu, Yan Zhang, Yanli Li, Zhigang Sun, Jifan Hu
PDF
Get Citation
  • Although TiNiSn-based half-Heusler thermoelectric materials obtain high power factors, their high lattice thermal conductivity greatly hinders the improvement of thermoelectric properties. In this paper, TiNiCoxSn (x=0~0.05) samples were prepared by melt spinning combined with spark plasma sintering method and their phase, microstructure and thermoelectric properties are studied. The XRD results show that the main phase of all samples is TiNiSn phase, and no other impurity phases are found, indicating that the high purity single phase can be prepared by rapid quenching process combined with SPS process. During the solidification process, the large cooling rate (105-106 K/s) is conducive to obtaining the uniform nanocrystalline structure. The grains are closely packed with a grain size of 200-600 nm. The grain size decrease to 50-400 nm for the Co-doping samples, which indicates that Co doping can reduce the grain size. For the x=0 sample, the thermal conductivity of the rapid quenching sample is significantly lower than that of bulk sample, with an average decrease of about 17.8%. Compared with the TiNiSn matrix, the thermal conductivity of the Co-doping samples are significantly reduced, and the maximum decrease is about 38.9%. The minimum value of lattice thermal conductivity of TiNiCoxSn samples is 3.19 W/mK. Therefore, Co doping can significantly reduce the кl of TiNiCoxSn (x=0.01~0.05) samples. With the increase of Co doping amount x, n/p transition is observed in the TiNiCoxSn samples, resulting in a gradually decrease of the conductivity and the power factor, and finally the deterioration of the electrical transport performance. Among them, the TiNiSn sample obtains the highest power factor of 29.56 W/mK2 at 700 K. The zT value decreases with the Co doping amount x, and the maximum zT value of TiNiSn sample at 900 K is 0.48. This work shows that the thermal conductivity of TiNiSn can be effectively reduced by using the melt spinning process and magnetic Co doping.
  • [1]

    Yang S-G, Lin X, He J-S, Zhai L-J, Cheng L, Lü M H, Liu H-X, Zhang Y. Sun Z-G, 2023Acta Physica Sinica. 72 228401.

    [2]

    Luo F, Zhu C, Wang J, He X, Yang Z, Ke S, Zhang Y, Liu H. Sun Z, 2022ACS Appl. Mater. Interfaces. 14 45503.

    [3]

    Ma S, Li C, Wei P, Zhu W, Nie X, Sang X, Zhang Q. Zhao W, 2020J MATER CHEM A. 8 4816.

    [4]

    Shi L, Chen J, Zhang G. Li B, 2012Phys. Lett. A 376 978.

    [5]

    Ouyang Y, Zhang Z, Li D, Chen J. Zhang G, 2019ANN PHYS-BERLIN. 531(4).

    [6]

    He J, Hu Y, Li D. Chen J, 2021NANO RES. 15 3804.

    [7]

    Xiao F, Hangarter C, Yoo B, Rheem Y, Lee K-H. Myung N V, 2008Electrochimica Acta 538103

    [8]

    Jiang B, Wang W, Liu S, Wang Y, Wang C, Chen Y, Xie L, Huang M. He J, 2022Science. 377 208.

    [9]

    Gelbstein Y, Rosenberg Y, Sadia Y. Dariel M P, 2010INDIAN J CHEM A. 11413126.

    [10]

    Komisarchik G, Gelbstein Y. Fuks D, 2017Intermetallics. 89 16.

    [11]

    Liu H-T, Sun Q, Zhong Y, Deng Q, Gan L, Lv F-L, Shi X-L, Chen Z-G. Ang R, 2022Nano Energy. 91 106706.

    [12]

    Pochet P. Caliste D, 2012MAT SCI SEMICON PROC. 15675.

    [13]

    Khan M R, Gopidi H R, Wlazło M. Malyi O I, 2023J. Phys. Chem. Lett. 14 1962.

    [14]

    Kaller M, Fuks D. Gelbstein Y, 2017J ALLOY COMPD. 729 446.

    [15]

    Chauhan N S, Bathula S, Vishwakarma A, Bhardwaj R, Gahtori B, Kumar A. Dhar A, 2018ACS Appl. Energy Mater. 1 757.

    [16]

    Lim W Y S, Zhang D, Duran S S F, Tan X Y, Tan C K I, Xu J. Suwardi A, 2021FRONT MATER. 8 745.

    [17]

    Wang J, Luo F, Zhu C, Wang J, He X, Zhang Y, Liu H. Sun Z, 2023J MATER CHEM. 11 4056.

    [18]

    Zhu C, Wang J, Zhu X, Zhang S, Xu F, Luo F, Wang J, Zhang Y, Liu H. Sun Z, 2023J MATER CHEM A. 11 1268.

    [19]

    Chen S-Q, Wang J, Yang Z, Zhu C, Luo F, Zhu X-Q, Xu F, Wang J-F, Zhang Y, Liu H-X, et al., 2023Acta Phys Sin. 72 068401.

    [20]

    Santos R, Yamini S A. Dou S X, 2018J MATER CHEM A. 6 3328.

    [21]

    Berry T, Fu C, Auffermann G, Fecher G H, Schnelle W, Serrano-Sanchez F, Yue Y, Liang H. Felser C, 2017Chem. Mater. 29 7042.

    [22]

    Downie R, Maclaren D. Bos J-W, 2014Journal of J MATER CHEM A. 2 6107.

    [23]

    Sanad M F, Shalan A E, Abdellatif S O, Serea E S A, Adly M S. Ahsan M A, 2020Top Curr Chem. 378 48.

    [24]

    Wang J, Zhu C, Luo F, Wang J, He X, Zhang Y, Liu H. Sun Z, 2023ACS Appl. Mater. Interfaces. 15 8105.

    [25]

    Lyu W-Y, Liu W-D, Li M, Hong M, Guo K, Luo J, Xing J, Sun Q, Xu S. Zou J, 2022Chem. Eng. J. 446 137278.

    [26]

    Hu B, Shi X-L, Zou J. Chen Z-G, 2022Chem. Eng. J 135.

    [27]

    Liu H, Zhang S, Zhang Y, Zong S, Li W, Zhu C, Luo F, Wang J. Sun Z, 2022ACS Appl. Energy Mater.5 12.

    [28]

    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G. Zhao X, 2017Advanced materials. 29 1605884.

    [29]

    Van Du N, Nam W H, Cho J Y, Binh N V, Huy P T, Tuan D A, Shin W H. Lee S, 2021J ALLOY COMPD. 886 161293.

    [30]

    Pei Y, Shi X, Lalonde A, Wang H, Chen L. Snyder G J, 2011Nature. 473 66.

    [31]

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A. Vashaee D, 2008Science. 320 634.

    [32]

    Zhao L-D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H. Dravid V P, 2016Science. 351 141.

    [33]

    Hohl H, Ramirez A P, Goldmann C, Ernst G, Wölfing B. Bucher E, 1999J PHYS-CONDENS MAT. 11 1697.

    [34]

    Chauhan N S, Raghuvanshi P R, Tyagi K, Johari K K, Tyagi L, Gahtori B, Bathula S, Bhattacharya A, Mahanti S D. Singh V N, 2020J PHYS-CONDENS MAT. 124 8584.

    [35]

    Shutoh N. Sakurada S, 2005J ALLOY COMPD. 389 204.

    [36]

    Cho J, Park T, Bae K W, Kim H S, Choi S M, Kim S I. Kim S W, 2021Materials. 14(14).

    [37]

    He J, Shen Y, Zhai L, Luo F, Zhang Y, Liu H, Hu J. Sun Z, 2024J ALLOY COMPD. 975 172808.

    [38]

    Wang J, Luo F, Zhu C, Zhang S, Yang Z, Wang J, He X, Zhang Y. Sun Z, 2022J APPL PHYS. 132(13).

    [39]

    Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P. Gogna P, 2007ADV MATER. 19 1043.

    [40]

    Dresselhaus M, Chen G, Ren Z, Dresselhaus G, Henry A. Fleurial J-P, 2009Jom. 61 86.

    [41]

    Yang J, Yip H L. Jen A K Y, 2013Adv. Energy Mater. 3 549.

    [42]

    Kim K S, Kim Y-M, Mun H, Kim J, Park J, Borisevich A Y, Lee K H. Kim S W, 2017ADV MATER. 29 1702091.

    [43]

    Katayama T, Kim S W, Kimura Y. Mishima Y, 2003J ELECTRON MATER. 32 1160.

    [44]

    Li C, Zhao W. Zhang Q, 2022Science bulletin. 67891.

    [45]

    Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S. He D, 2017Nature. 549 247

    [46]

    Luo F, Wang J, Zhu C, He X, Zhang S, Wang J, Liu H. Sun Z, 2022J MATER CHEM A. 10 9655

    [47]

    Du N V, Nam W H, Cho J Y, Binh N V, Huy P T, Trung D Q, Tuan D A, Shin W H. Lee S, 2021J ALLOY COMPD. 886 161293.

    [48]

    Xv H, 2021J NANOTECHNOL. 11 135.

    [49]

    Luo F, 2023. Ph. D. Dissertation (Wuhan:Wuhan University of Technology)(in Chinese)[罗丰,2023博士学位论文(武汉:武汉理工大学)].

    [50]

    An D, Wang J, Zhang J, Zhai X, Kang Z, Fan W, Yan J, Liu Y, Lu L, Jia C-L, et al., 2021Energy Environ. Sci. 14 5469.

    [51]

    Drymiotis F, Lashley J C, Fisk Z, Peterson E. Nakatsuji S, 2003Philos. Mag. 83 3169.

    [52]

    Kim H-S, Gibbs Z M, Tang Y, Wang H. Snyder G J, 2015APL Materials. 3(4).

    [53]

    Baranovskiy A, Harush M. Amouyal Y, 2019ADV THEOR SIMUL. 254.

    [54]

    Chi H, Liu W, Sun K, Su X, Wang G, Lošt'ák P, Kucek V, DrašarČ. Uher C, 2013PHYS REV B. 88(4).

    [55]

    Lkhagvasuren E, Fu C, Fecher G H, Auffermann G, Kreiner G, Schnelle W. Felser C, 2017J PHYS D APPL PHYS. 50 425502.

    [56]

    Gong B, Li Y, Liu F, Zhu J, Wang X, Ao W, Zhang C, Li J, Xie H. Zhu T, 2019ACS Appl. Mater. Interfaces. 1113397.

    [57]

    Mao J, Zhou J, Zhu H, Liu Z, Zhang H, He R, Chen G. Ren Z, 2017Chem. Mater. 2914.

    [58]

    Yan J, Liu F, Ma G, Gong B, Zhu J, Wang X, Ao W, Zhang C, Li Y. Li J, 2018Scripta Materialia. 157129.

    [59]

    Liu Y, Xie H, Fu C, Snyder G J, Zhao X. Zhu T, 2015J MATER CHEM A. 3 22716.

  • [1] Huang Lu-Lu, Zhang Jian, Kong Yuan, Li Di, Xin Hong-Xing, Qin Xiao-Ying. Optimization of thermoelectric transport performance of nickel-doped CuGaTe2. Acta Physica Sinica, doi: 10.7498/aps.70.20211165
    [2] Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua. Thermoelectric properties and prospects of MAX phases and derived MXene phases. Acta Physica Sinica, doi: 10.7498/aps.70.20211050
    [3] Yuan Min-Hui, Le Wen-Kai, Tan Xiao-Jian, Shuai Jing. Research progress of two-dimensional covalent bond substructure Zintl phase thermoelectric materials. Acta Physica Sinica, doi: 10.7498/aps.70.20211010
    [4] Zhao Ying-Hao, Zhang Rui, Zhang Bo-Ping, Yin Yang, Wang Ming-Jun, Liang Dou-Dou. Phase structure and thermoelectric properties of Cu1.8–x Sbx S thermoelectric material. Acta Physica Sinica, doi: 10.7498/aps.70.20201852
    [5] Huang Qing-Song, Duan Bo, Chen Gang, Ye Ze-Chang, Li Jiang, Li Guo-Dong, Zhai Peng-Cheng. Mn-In-Cu co-doping to optimize thermoelectric properties of SnTe-based materials. Acta Physica Sinica, doi: 10.7498/aps.70.20202020
    [6] Wang Ya-Ning, Chen Shao-Ping, Fan Wen-Hao, Guo Jing-Yun, Wu Yu-Cheng, Wang Wen-Xian. Interface performance of PbTe-based thermoelectric joints. Acta Physica Sinica, doi: 10.7498/aps.69.20201080
    [7] Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng. Improving interface properties of Te based thermoelectric materials and composite electrodes. Acta Physica Sinica, doi: 10.7498/aps.69.20200436
    [8] Wang Tuo, Chen Hong-Yi, Qiu Peng-Fei, Shi Xun, Chen Li-Dong. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, doi: 10.7498/aps.68.20190073
    [9] Tao Ying, Qi Ning, Wang Bo, Chen Zhi-Quan, Tang Xin-Feng. Microstructure and thermoelectric properties of In2O3/poly(3, 4-ethylenedioxythiophene) composites. Acta Physica Sinica, doi: 10.7498/aps.67.20180382
    [10] Xue Li, Ren Yi-Ming. The first-principles study of electrical and thermoelectric properties of CuGaTe2 and CuInTe2. Acta Physica Sinica, doi: 10.7498/aps.65.156301
    [11] Wang Hong-Xiang, Ying Peng-Zhan, Yang Jiang-Feng, Chen Shao-Ping, Cui Jiao-Lin. Defects and thermoelectric performance of ternary chalcopyrite CuInTe2-based semiconductors doped with Mn. Acta Physica Sinica, doi: 10.7498/aps.65.067201
    [12] Zhang Yu, Wu Li-Hua, Zengli Jiao-Kai, Liu Ye-Feng, Zhang Ji-Ye, Xing Juan-Juan, Luo Jun. Microstructures and thermoelectric transports in PbSe-MnSe nano-composites. Acta Physica Sinica, doi: 10.7498/aps.65.107201
    [13] Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin. Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors. Acta Physica Sinica, doi: 10.7498/aps.64.197201
    [14] Wu Zi-Hua, Xie Hua-Qing, Zeng Qing-Feng. Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel. Acta Physica Sinica, doi: 10.7498/aps.62.097301
    [15] Huo Feng-Ping, Wu Rong-Gui, Xu Gui-Ying, Niu Si-Tong. Thermoelectric properties of (AgSbTe2)100-x (GeTe)x fabricated by hot pressing method. Acta Physica Sinica, doi: 10.7498/aps.61.087202
    [16] Ge Zhen-Hua, Zhang Bo-Ping, Yu Zhao-Xin, Liu Yong, Li Jing-Feng. Effects of mechanical alloying process on thermoelectric properties of Bi2S3 Bulk. Acta Physica Sinica, doi: 10.7498/aps.61.048401
    [17] Fan Ping, Zheng Zhuang-Hao, Liang Guang-Xing, Zhang Dong-Ping, Cai Xing-Min. Preparation and characterization of Sb2Te3 thermoelectric thin films by ion beam sputtering. Acta Physica Sinica, doi: 10.7498/aps.59.1243
    [18] Chen Xiao-Yang, Xu Xiang-Fan, Hu Rong-Xing, Ren Zhi, Xu Zhu-An, Cao Guang-Han. Synthesis and thermopower measurement of LixNayCoO2. Acta Physica Sinica, doi: 10.7498/aps.56.1627
    [19] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, doi: 10.7498/aps.56.3473
    [20] Lü Qiang, Rong Jian-Ying, Zhao Lei, Zhang Hong-Chen, Hu Jian-Min, Xin Jiang-Bo. Influence of process parameters on the electrical properties of n-type and p-type Bi2Te3-based pseudo-ternary thermoelectric materials by the hot-pressing method. Acta Physica Sinica, doi: 10.7498/aps.54.3321
Metrics
  • Abstract views:  199
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  27 March 2024

/

返回文章
返回