搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PbSe-MnSe纳米复合热电材料的微结构和电热输运性能

张玉 吴立华 曾李骄开 刘叶烽 张继业 邢娟娟 骆军

PbSe-MnSe纳米复合热电材料的微结构和电热输运性能

张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军
PDF
导出引用
导出核心图
  • 相比于常见的热电材料PbTe, 另一种硫族铅化合物PbSe具有熔点高、Se储量更丰富等优势, 从而越来越受到科学界的关注. 本文采用熔融淬火结合快速热压烧结工艺制备了Pb0.98-xMnxNa0.02Se(0 x 0.12)纳米复合热电材料, 系统地研究了不同Mn含量对材料微纳结构、机械性能和热电性能的影响规律. 发现纳米复合样品中有面心立方结构的MnSe球状和薄层状析出物, 显微硬度得到显著增强. 少量固溶的Mn增加了能带简并度, 使功率因子提高, 球状析出物使声子散射增强、热导率降低, 体系的热电优值ZT得到优化; 但是当Mn含量更高时, 赛贝克系数趋于饱和, 连续析出物使晶格热导率反常增大, ZT 没有得到进一步改善. 通过进一步调节Na含量优化了载流子浓度, 获得了ZT=0.65的PbSe-MnSe纳米复合热电材料.
      通信作者: 骆军, junluo@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51371194,51172276)资助的课题.
    [1]

    Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92

    [5]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549

    [6]

    Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)

    [7]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [8]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [9]

    Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561

    [10]

    Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202

    [11]

    Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302

    [12]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14

    [13]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [14]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [15]

    Liu Y, Li H J 2015 Chin. Phys. B 24 047202

    [16]

    Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537

    [17]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [18]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [19]

    Kanatzidis M G 2009 Chem. Mater. 22 648

    [20]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818

    [21]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160

    [22]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [23]

    Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)

    [24]

    Parker D, Singh D J 2010 Phys. Rev. B 82 035204

    [25]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [26]

    Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [27]

    Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804

    [28]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705

    [29]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246

    [30]

    Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501

    [31]

    Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28

    [32]

    Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303

    [33]

    Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125

    [34]

    Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000

    [35]

    Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579

  • [1]

    Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [3]

    Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357

    [4]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92

    [5]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549

    [6]

    Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)

    [7]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043

    [8]

    Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]

    [9]

    Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561

    [10]

    Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202

    [11]

    Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302

    [12]

    Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14

    [13]

    Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287

    [14]

    Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402

    [15]

    Liu Y, Li H J 2015 Chin. Phys. B 24 047202

    [16]

    Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537

    [17]

    Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

    [18]

    Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554

    [19]

    Kanatzidis M G 2009 Chem. Mater. 22 648

    [20]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818

    [21]

    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160

    [22]

    Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414

    [23]

    Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)

    [24]

    Parker D, Singh D J 2010 Phys. Rev. B 82 035204

    [25]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366

    [26]

    Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085

    [27]

    Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804

    [28]

    Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705

    [29]

    Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246

    [30]

    Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501

    [31]

    Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28

    [32]

    Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303

    [33]

    Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125

    [34]

    Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000

    [35]

    Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1503
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 修回日期:  2016-02-25
  • 刊出日期:  2016-05-05

PbSe-MnSe纳米复合热电材料的微结构和电热输运性能

  • 1. 上海大学材料科学与工程学院, 上海 200444
  • 通信作者: 骆军, junluo@shu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51371194,51172276)资助的课题.

摘要: 相比于常见的热电材料PbTe, 另一种硫族铅化合物PbSe具有熔点高、Se储量更丰富等优势, 从而越来越受到科学界的关注. 本文采用熔融淬火结合快速热压烧结工艺制备了Pb0.98-xMnxNa0.02Se(0 x 0.12)纳米复合热电材料, 系统地研究了不同Mn含量对材料微纳结构、机械性能和热电性能的影响规律. 发现纳米复合样品中有面心立方结构的MnSe球状和薄层状析出物, 显微硬度得到显著增强. 少量固溶的Mn增加了能带简并度, 使功率因子提高, 球状析出物使声子散射增强、热导率降低, 体系的热电优值ZT得到优化; 但是当Mn含量更高时, 赛贝克系数趋于饱和, 连续析出物使晶格热导率反常增大, ZT 没有得到进一步改善. 通过进一步调节Na含量优化了载流子浓度, 获得了ZT=0.65的PbSe-MnSe纳米复合热电材料.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回