-
相比于常见的热电材料PbTe, 另一种硫族铅化合物PbSe具有熔点高、Se储量更丰富等优势, 从而越来越受到科学界的关注. 本文采用熔融淬火结合快速热压烧结工艺制备了Pb0.98-xMnxNa0.02Se(0 x 0.12)纳米复合热电材料, 系统地研究了不同Mn含量对材料微纳结构、机械性能和热电性能的影响规律. 发现纳米复合样品中有面心立方结构的MnSe球状和薄层状析出物, 显微硬度得到显著增强. 少量固溶的Mn增加了能带简并度, 使功率因子提高, 球状析出物使声子散射增强、热导率降低, 体系的热电优值ZT得到优化; 但是当Mn含量更高时, 赛贝克系数趋于饱和, 连续析出物使晶格热导率反常增大, ZT 没有得到进一步改善. 通过进一步调节Na含量优化了载流子浓度, 获得了ZT=0.65的PbSe-MnSe纳米复合热电材料.
[1] Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[3] Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357
[4] Zhang X, Zhao L D 2015 J. Materiomics 1 92
[5] Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549
[6] Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)
[7] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[8] Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]
[9] Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561
[10] Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202
[11] Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302
[12] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14
[13] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[14] Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402
[15] Liu Y, Li H J 2015 Chin. Phys. B 24 047202
[16] Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537
[17] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[18] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[19] Kanatzidis M G 2009 Chem. Mater. 22 648
[20] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818
[21] Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160
[22] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414
[23] Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)
[24] Parker D, Singh D J 2010 Phys. Rev. B 82 035204
[25] Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366
[26] Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085
[27] Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804
[28] Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705
[29] Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246
[30] Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501
[31] Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28
[32] Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303
[33] Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125
[34] Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000
[35] Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579
-
[1] Shi X, Xi L, Yang J, Zhang W, Chen L 2011 Physics 40 710
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[3] Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357
[4] Zhang X, Zhao L D 2015 J. Materiomics 1 92
[5] Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549
[6] Ioffe A 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited)
[7] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043
[8] Zhang F, Zhu H T, Luo J, Liang J K, Rao G H, Liu Q L 2010 Acta Phys. Sin. 59 7232 (in Chinese) [张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林 2010 物理学报 59 7232]
[9] Chen L, Xiong Z, Bai S 2010 J. Inorg. Mater. 25 561
[10] Li L L, Qin X Y, Liu Y F, Liu Q Z 2015 Chin. Phys. B 24 067202
[11] Wang S F, Yan G Y, Chen S S, Bai Z L, Wang J L, Yu W, Fu G S 2013 Chin. Phys. B 22 037302
[12] Kim S I, Lee K H, Mun H A, Kim H S, Hwang S W, Roh J W, Yang D J, Shin W H, Li X S, Lee Y H 2015 Science 348 109-14
[13] Li H, Tang X F, Cao W Q, Zhang Q J 2009 Chin. Phys. B 18 287
[14] Wu Z H, Xie H Q, Zhai Y B, Gan L H, Liu J 2015 Chin. Phys. B 24 034402
[15] Liu Y, Li H J 2015 Chin. Phys. B 24 047202
[16] Bennett G L 1995 in Rowe DM ed. CRC Handbook of Thermoelectrics (Boca Raton, US: CRC Press) pp 515-537
[17] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66
[18] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
[19] Kanatzidis M G 2009 Chem. Mater. 22 648
[20] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E, Kanatzidis M G 2004 Science 303 818
[21] Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P, Kanatzidis M G 2011 Nat. Chem. 3 160
[22] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, Kanatzidis M G 2012 Nature 489 414
[23] Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science Business Media)
[24] Parker D, Singh D J 2010 Phys. Rev. B 82 035204
[25] Wang H, Pei Y, LaLonde A D, Snyder G J 2011 Adv. Mater. 23 1366
[26] Pei Y, LaLonde A, Iwanaga S, Snyder G J 2011 Energy Environ. Sci. 4 2085
[27] Wang H, Gibbs Z M, Takagiwa Y, Snyder G J 2014 Energy Environ. Sci. 7 804
[28] Wang H, Pei Y, LaLonde A D, Snyder G J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 9705
[29] Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K 2012 Energy Environ. Sci. 5 5246
[30] Tan X, Shao H, Hu T, Liu G Q, Ren S F 2015 J. Phys.: Condens. Matter 27 095501
[31] Pei Y, Wang H, Gibbs Z M, LaLonde A D, Snyder G J 2012 NPG Asia Materials 4 e28
[32] Kiyosawa T, Takahashi S, Koguchi N 1992 J. Mater. Sci. 27 5303
[33] Pei Y, Wang H, Snyder G 2012 Adv. Mater. 24 6125
[34] Rogacheva E I, Krivulkin I M 2001 Fiz. Tverd. Tela. 43 1000
[35] Rogacheva E I 2003 J. Phys. Chem. Solids 64 1579
引用本文: |
Citation: |
计量
- 文章访问数: 1503
- PDF下载量: 287
- 被引次数: 0