Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Finite element method study on the temperature distribution in the cell of large single crystal diamond

Zhang Cong Han Qi-Gang Ma Hong-An Xiao Hong-Yu Li Rui Li Zhan-Chang Tian Yu Jia Xiao-Peng

Finite element method study on the temperature distribution in the cell of large single crystal diamond

Zhang Cong, Han Qi-Gang, Ma Hong-An, Xiao Hong-Yu, Li Rui, Li Zhan-Chang, Tian Yu, Jia Xiao-Peng
PDF
Get Citation
  • The temperature distribution in the cell of single crystal diamond grown by the temperature gradient method has been studied, which is based on the finite element method. Our results shwo that the temperature distribution in the synthetic process of single crystal diamond is not uniform. The highest temperature in the cell is located at the outside of single carbon solvent, and the lowest temperature in the cell is located near the diamond seed. The heat transfer and the mass transport have a same direction (from outside of carbon source to diamond seed). The temperature gradient in the axial direction is higher than that in the radial direction, which explains why the size of synthetic single crystal diamond in the axial direction is larger than that in the radial direction. The model will be useful for the design of single crystal diamond grown by the temperature gradient method. Furthermore, this work will be hopeful to improve the cubic anvil type high pressure techniques for the synthesis of high quality diamond crystals.
    • Funds:
    [1]

    [1]Sumiya H, Satoh S 1996 Diamond and Related Materials 5 1359

    [2]

    [2]Abbaschian Reza, Zhu Henry, Clarke Carter 2005 Diamond and Related Materials 14 1916

    [3]

    [3]Sumiya H, Nakamoto Y, Shimizu K, Kanda H 2008 Applied Physics Letters 93 1101915

    [4]

    [4]Wang J H, He D W 2008 Acta Phys. Sin. 57 3397 (in Chinese)[王江华、贺端威 2008 物理学报 57 3397]

    [5]

    [5]Zhou Z Y, Chen G C, Tang W Z, Lu F X 2006 Chin. Phys. 15 980

    [6]

    [6]Luo J F, Tang B C, Gao C X, Li M, Han Y H, Zou G T 2005 Chin. Phys. 14 1770

    [7]

    [7]Liu S C, Wang L J, Cheng X R, Sun G X, Li J L, Hu X D, Shen Z T 1977 Acta Phys. Sin. 26 363 (in Chinese)[刘世超、 王莉君、 成向荣、 孙帼显、 李家璘、 胡欣德、 沈主同 1977 物理学报 26 363]

    [8]

    [8]Pan B C, Xia S D 1993 Acta Phys. Sin. 42 320 (in Chinese)[潘必才、夏上达 1993 物理学报 42 320]

    [9]

    [9]Liu F B, Wang J D, Chen D R, Yan D Y 2009 Chin. Phys. B 18 2041

    [10]

    [10 ]Strong H M, Chrenko R M 1971 J. Phys. Chem. 75 1838

    [11]

    ] Sumiya H, Satoh S 1996 Diamond and Related Materials 5 1359

    [12]

    ] Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M, Welch D L 1999 Diamond and Related Materials 8 1433

    [13]

    ]Cheng Y, Huang Q J, Liu X J 2008 Chin. Phys. B 17 4273

    [14]

    ]Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Grace Zhang, Phillip Bex 2002 J. Phys: Condens. Matter 14 11269

    [15]

    ]Han Q G, Jia X P, Ma H A, Li R, Zhang C, Li Z C, Tian Y 2009 Acta Phys. Sin. 58 4812 (in Chinese)[韩奇钢、贾晓鹏、马红安、李瑞、张聪、李占厂、田宇 2009 物理学报 58 4812]

  • [1]

    [1]Sumiya H, Satoh S 1996 Diamond and Related Materials 5 1359

    [2]

    [2]Abbaschian Reza, Zhu Henry, Clarke Carter 2005 Diamond and Related Materials 14 1916

    [3]

    [3]Sumiya H, Nakamoto Y, Shimizu K, Kanda H 2008 Applied Physics Letters 93 1101915

    [4]

    [4]Wang J H, He D W 2008 Acta Phys. Sin. 57 3397 (in Chinese)[王江华、贺端威 2008 物理学报 57 3397]

    [5]

    [5]Zhou Z Y, Chen G C, Tang W Z, Lu F X 2006 Chin. Phys. 15 980

    [6]

    [6]Luo J F, Tang B C, Gao C X, Li M, Han Y H, Zou G T 2005 Chin. Phys. 14 1770

    [7]

    [7]Liu S C, Wang L J, Cheng X R, Sun G X, Li J L, Hu X D, Shen Z T 1977 Acta Phys. Sin. 26 363 (in Chinese)[刘世超、 王莉君、 成向荣、 孙帼显、 李家璘、 胡欣德、 沈主同 1977 物理学报 26 363]

    [8]

    [8]Pan B C, Xia S D 1993 Acta Phys. Sin. 42 320 (in Chinese)[潘必才、夏上达 1993 物理学报 42 320]

    [9]

    [9]Liu F B, Wang J D, Chen D R, Yan D Y 2009 Chin. Phys. B 18 2041

    [10]

    [10 ]Strong H M, Chrenko R M 1971 J. Phys. Chem. 75 1838

    [11]

    ] Sumiya H, Satoh S 1996 Diamond and Related Materials 5 1359

    [12]

    ] Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M, Welch D L 1999 Diamond and Related Materials 8 1433

    [13]

    ]Cheng Y, Huang Q J, Liu X J 2008 Chin. Phys. B 17 4273

    [14]

    ]Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Grace Zhang, Phillip Bex 2002 J. Phys: Condens. Matter 14 11269

    [15]

    ]Han Q G, Jia X P, Ma H A, Li R, Zhang C, Li Z C, Tian Y 2009 Acta Phys. Sin. 58 4812 (in Chinese)[韩奇钢、贾晓鹏、马红安、李瑞、张聪、李占厂、田宇 2009 物理学报 58 4812]

  • [1] Xiao Hong-Yu, Su Jian-Feng, Zhang Yong-Sheng, Bao Zhi-Gang. Synthesis and characterization of the Gem-diamond by temperature gradient method. Acta Physica Sinica, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [2] Li Rui, Han Qi-Gang, Jia Xiao-Peng, Ma Hong-An, Zhang Cong, Li Zhan-Chang, Tian Yu. Finite element simulations of thermal-stress on cemented tungsten carbide anvil used in cubic high pressure apparatus. Acta Physica Sinica, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [3] Li Bin-Cheng, Liu Ming-Qiang. Analysis of temperature and deformation fields in an optical coating sample. Acta Physica Sinica, 2008, 57(6): 3402-3409. doi: 10.7498/aps.57.3402
    [4] Yan Jian-Hua, Wang Fei, Huang Qun-Xing, Chi Yong, Cen Ke-Fa, Liu Dong. Simultaneous experimental reconstruction of three-dimensional flame soot temperature and volume fraction distributions. Acta Physica Sinica, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [5] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai, Lei Ming-Kai. Numerical study on the evolution of temperature of double-layer target irradiated by high power ion beam. Acta Physica Sinica, 2010, 59(7): 4826-4830. doi: 10.7498/aps.59.4826
    [6] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [7] Zhao Yun-Jin, Tian Meng, Huang Yong-Gang, Wang Xiao-Yun, Yang Hong, Mi Xian-Wu. Renormalization of photon dyadic Green function by finite element method and its applications in the study of spontaneous emission rate and energy level shift. Acta Physica Sinica, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [8] Feng Ai-Xia, Wang Qi-Guang, Huang Yan, Gong Zhi-Qiang. Spatiotemporal analysis of information entropy of the global temperature. Acta Physica Sinica, 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [9] Wang Ping, Yin Yu-Zhen, Shen Sheng-Qiang. Numerical study of convection heat transfer in ordered three-dimensional porous media. Acta Physica Sinica, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [10] Yu Ge, Han Qi-Gang, Li Ming-Zhe, Jia Xiao-Peng, Ma Hong-An, Li Yue-Fen. Finite element analysis of the high-pressure tungsten carbide radius-anvil. Acta Physica Sinica, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
  • Citation:
Metrics
  • Abstract views:  3486
  • PDF Downloads:  1134
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2009
  • Accepted Date:  26 October 2009
  • Published Online:  15 March 2010

Finite element method study on the temperature distribution in the cell of large single crystal diamond

  • 1. (1)长春理工大学材料科学与工程学院,长春 130012; (2)吉林大学超硬材料国家重点实验室,长春 130012

Abstract: The temperature distribution in the cell of single crystal diamond grown by the temperature gradient method has been studied, which is based on the finite element method. Our results shwo that the temperature distribution in the synthetic process of single crystal diamond is not uniform. The highest temperature in the cell is located at the outside of single carbon solvent, and the lowest temperature in the cell is located near the diamond seed. The heat transfer and the mass transport have a same direction (from outside of carbon source to diamond seed). The temperature gradient in the axial direction is higher than that in the radial direction, which explains why the size of synthetic single crystal diamond in the axial direction is larger than that in the radial direction. The model will be useful for the design of single crystal diamond grown by the temperature gradient method. Furthermore, this work will be hopeful to improve the cubic anvil type high pressure techniques for the synthesis of high quality diamond crystals.

Reference (15)

Catalog

    /

    返回文章
    返回