搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用

赵运进 田锰 黄勇刚 王小云 杨红 米贤武

基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用

赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武
PDF
导出引用
  • 任意微纳结构中量子点的自发辐射率和能级移动均可用并矢格林函数表达.当源点和场点在同一位置时,格林函数的实部是发散的.为解决这一发散问题,可采用重整化格林函数方法.本文提出一种计算重整化格林函数和散射格林函数的方法.该方法利用有限元,计算点电偶极子的辐射场,将其在量子点体积内做平均得到重整化的并矢格林函数,减去均匀空间中解析的重整化格林函数,得到重整化的散射格林函数.在均匀空间情况下,本方法所得数值结果与解析解一致.将该方法应用到银纳米球系统,以解析的散射格林函数作为参考,结果表明该方法能准确处理散射格林函数的重整化问题.将该方法应用到表面等离激元纳米腔中,发现有极大的自发辐射增强和能级移动,且该结果不依赖于量子点的体积.这些研究在光与物质相互作用领域具有积极的意义.
      通信作者: 黄勇刚, huang122012@163.com
    • 基金项目: 国家自然科学基金(批准号:11464014,11347215,11364020,11564013,11464013)、湖南省自然科学基金(批准号:2016JJ4073)和湖南省研究生科研创新项目(批准号:CX2017B718)资助的课题.
    [1]

    Berestetskii V B, Lifshitz E M, Pitaevskiǐ L P 1982 Quantum Electrodynamics (2nd Ed.) (England:Butterworth-Heinemann) pp159-165

    [2]

    Tannoudji C C, Roc D J, Grynberg G 1997 Photons and Atoms:Introduction to Quantum Electrodynamics (New York:John Wiley Sons) pp197-200

    [3]

    Milonni P W 1993 The Quantum Vacuum:An Introduction to Quantum Electrodynamics (San Diego:Academic Press) pp78-107

    [4]

    Wang X H, Wang R Z, Gu B Y, Yang G Z 2002 Phys. Rev. Lett. 88 093902

    [5]

    Zhou Y S, Wang X H, Gu B Y, Wang F H 2006 Phys. Rev. Lett. 96 103601

    [6]

    Wang X H, Gu B Y (in Chinese) [王雪华, 顾本源 2005 物理 34 18]

    [7]

    Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2014 物理学报 63 094205]

    [8]

    Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 物理学报 66 014202]

    [9]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [10]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [11]

    Xie S Y, Yang Y P, Lin Z X, Wu X 1999 Acta Phys. Sin. 48 1459 (in Chinese) [谢双媛, 羊亚平, 林志新, 吴翔 1999 物理学报 48 1459]

    [12]

    Yang Y P, Lin Z X, Xie S Y, Feng W G, Wu X 1999 Acta Phys. Sin. 48 603 (in Chinese) [羊亚平, 林志新, 谢双媛, 冯伟国, 吴翔 1999 物理学报 48 603]

    [13]

    Huang Y G, Chen G Y, Jin C J, Liu W M, Wang X H 2012 Phys. Rev. A 85 053827

    [14]

    Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mllen K, Moerner W E 2009 Nature Photon. 3 654

    [15]

    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601

    [16]

    Li M, Cushing S K, Wu N Q 2015 Analyst 140 386

    [17]

    Taylor A B, Zijlstra P 2017 ACS Sens. 2 1103

    [18]

    Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X G, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S J 2012 Science 337 450

    [19]

    Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204

    [20]

    Xu H X, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [21]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901

    [22]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401

    [23]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225

    [24]

    Gonzlez-Tudela A, Huidobro P A, Martn-Moreno L, Tejedor C, Garca-Vidal F J 2014 Phys. Rev. B 89 041402

    [25]

    Delga A, Feist J, Bravo-Abad J, Garcia-Vidal F J 2014 Phys. Rev. Lett. 112 253601

    [26]

    Zhao Y J, Tian M, Wang X Y, Yang H, Zhao H P, Huang Y G 2018 Opt. Express 26 1390

    [27]

    van Vlack C, Kristensen P T, Hughes S 2012 Phys. Rev. B 85 075303

    [28]

    Yaghjian A D 1980 Proc. IEEE 68 248

    [29]

    Huttner B, Barnett S M 1992 Phys. Rev. A 46 4306

    [30]

    Scheel S, Knll L, Welsch D G 1999 Phys. Rev. A 60 4094

    [31]

    Scheel S, Knll L, Welsch D G, Barnett S M 1999 Phys. Rev. A 60 1590

    [32]

    de Vries P, van Coevorden D V, Lagendijk A 1998 Rev. Mod. Phys. 70 447

    [33]

    Dung H T, Buhmann S Y, Knll L, Welsch D, Scheel S, Kstel J 2003 Phys. Rev. A 68 043816

    [34]

    Chaumet P C, Sentenac A, Rahmani A 2004 Phys. Rev. E 70 036606

    [35]

    van Vlack C, Hughes S 2012 Opt. Lett. 37 2880

    [36]

    Martin O J F, Piller N B. 1998 Phys. Rev. E 58 3909

    [37]

    Tannoudji C C, Roc D J, Grynberg G 1992 Atom-Photon Interactions:Basic Processes and Applications (New York:John Wiley Sons) pp165-205

    [38]

    Agarwal G S 1974 Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Berlin, Heidelberg:Springer) pp17-23

    [39]

    Jin J M 2014 The Finite Element Method in Electromagnetics (3rd Ed.) (New York:Wiley-IEEE Press) pp1-188

    [40]

    Benjamin G, Jrmy B, MartF, Olivier J 2015 Laser Photon. Rev. 9 577

    [41]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mrk J 2010 Phys. Rev. B 81 125431

    [42]

    https://www.comsol.com/[2018-5-6]

    [43]

    Bai Q, Perrin M, Sauvan C, Hugonin J P, Lalanne P 2013 Opt. Express 21 27371

    [44]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623

    [45]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913

    [46]

    Yang C J, An J H 2017 Phys. Rev. B 95 161408

  • [1]

    Berestetskii V B, Lifshitz E M, Pitaevskiǐ L P 1982 Quantum Electrodynamics (2nd Ed.) (England:Butterworth-Heinemann) pp159-165

    [2]

    Tannoudji C C, Roc D J, Grynberg G 1997 Photons and Atoms:Introduction to Quantum Electrodynamics (New York:John Wiley Sons) pp197-200

    [3]

    Milonni P W 1993 The Quantum Vacuum:An Introduction to Quantum Electrodynamics (San Diego:Academic Press) pp78-107

    [4]

    Wang X H, Wang R Z, Gu B Y, Yang G Z 2002 Phys. Rev. Lett. 88 093902

    [5]

    Zhou Y S, Wang X H, Gu B Y, Wang F H 2006 Phys. Rev. Lett. 96 103601

    [6]

    Wang X H, Gu B Y (in Chinese) [王雪华, 顾本源 2005 物理 34 18]

    [7]

    Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2014 物理学报 63 094205]

    [8]

    Xing R, Xie S Y, Xu J P, Yang Y P 2017 Acta Phys. Sin. 66 014202 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平 2017 物理学报 66 014202]

    [9]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [10]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [11]

    Xie S Y, Yang Y P, Lin Z X, Wu X 1999 Acta Phys. Sin. 48 1459 (in Chinese) [谢双媛, 羊亚平, 林志新, 吴翔 1999 物理学报 48 1459]

    [12]

    Yang Y P, Lin Z X, Xie S Y, Feng W G, Wu X 1999 Acta Phys. Sin. 48 603 (in Chinese) [羊亚平, 林志新, 谢双媛, 冯伟国, 吴翔 1999 物理学报 48 603]

    [13]

    Huang Y G, Chen G Y, Jin C J, Liu W M, Wang X H 2012 Phys. Rev. A 85 053827

    [14]

    Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mllen K, Moerner W E 2009 Nature Photon. 3 654

    [15]

    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601

    [16]

    Li M, Cushing S K, Wu N Q 2015 Analyst 140 386

    [17]

    Taylor A B, Zijlstra P 2017 ACS Sens. 2 1103

    [18]

    Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X G, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S J 2012 Science 337 450

    [19]

    Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204

    [20]

    Xu H X, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [21]

    Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, Kim Y 2017 Phys. Rev. Lett. 119 013901

    [22]

    Liu R M, Zhou Z K, Yu Y C, Zhang T W, Wang H, Liu G H, Wei Y M, Chen H J, Wang X H 2017 Phys. Rev. Lett. 118 237401

    [23]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225

    [24]

    Gonzlez-Tudela A, Huidobro P A, Martn-Moreno L, Tejedor C, Garca-Vidal F J 2014 Phys. Rev. B 89 041402

    [25]

    Delga A, Feist J, Bravo-Abad J, Garcia-Vidal F J 2014 Phys. Rev. Lett. 112 253601

    [26]

    Zhao Y J, Tian M, Wang X Y, Yang H, Zhao H P, Huang Y G 2018 Opt. Express 26 1390

    [27]

    van Vlack C, Kristensen P T, Hughes S 2012 Phys. Rev. B 85 075303

    [28]

    Yaghjian A D 1980 Proc. IEEE 68 248

    [29]

    Huttner B, Barnett S M 1992 Phys. Rev. A 46 4306

    [30]

    Scheel S, Knll L, Welsch D G 1999 Phys. Rev. A 60 4094

    [31]

    Scheel S, Knll L, Welsch D G, Barnett S M 1999 Phys. Rev. A 60 1590

    [32]

    de Vries P, van Coevorden D V, Lagendijk A 1998 Rev. Mod. Phys. 70 447

    [33]

    Dung H T, Buhmann S Y, Knll L, Welsch D, Scheel S, Kstel J 2003 Phys. Rev. A 68 043816

    [34]

    Chaumet P C, Sentenac A, Rahmani A 2004 Phys. Rev. E 70 036606

    [35]

    van Vlack C, Hughes S 2012 Opt. Lett. 37 2880

    [36]

    Martin O J F, Piller N B. 1998 Phys. Rev. E 58 3909

    [37]

    Tannoudji C C, Roc D J, Grynberg G 1992 Atom-Photon Interactions:Basic Processes and Applications (New York:John Wiley Sons) pp165-205

    [38]

    Agarwal G S 1974 Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Berlin, Heidelberg:Springer) pp17-23

    [39]

    Jin J M 2014 The Finite Element Method in Electromagnetics (3rd Ed.) (New York:Wiley-IEEE Press) pp1-188

    [40]

    Benjamin G, Jrmy B, MartF, Olivier J 2015 Laser Photon. Rev. 9 577

    [41]

    Chen Y T, Nielsen T R, Gregersen N, Lodahl P, Mrk J 2010 Phys. Rev. B 81 125431

    [42]

    https://www.comsol.com/[2018-5-6]

    [43]

    Bai Q, Perrin M, Sauvan C, Hugonin J P, Lalanne P 2013 Opt. Express 21 27371

    [44]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623

    [45]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913

    [46]

    Yang C J, An J H 2017 Phys. Rev. B 95 161408

  • [1] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [2] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [3] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [4] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [5] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [6] 许炜炜, 白明珠, 林强, 胡正珲. 基于个性化三维心脏-躯干模型的心磁正问题. 物理学报, 2019, 68(17): 178702. doi: 10.7498/aps.68.20190387
    [7] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [8] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [9] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [10] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [11] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析. 物理学报, 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [12] 郑 凯, 常德远, 傅永军, 魏 淮, 延凤平, 简 伟, 简水生. 掺铒孔辅助导光光纤的特性研究与优化设计. 物理学报, 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [13] 张洪武, 王晋宝, 叶宏飞, 王 磊. 范德华力的广义参变本构模型及其在碳纳米管计算中的应用. 物理学报, 2007, 56(3): 1422-1428. doi: 10.7498/aps.56.1422
    [14] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [15] 张俊兵, 林岳明, 柏 林, 曾祥华. AlGaInP LED电极形状的优化. 物理学报, 2008, 57(9): 5881-5886. doi: 10.7498/aps.57.5881
    [16] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [17] 刘海强, 过振, 王石语, 林林, 郭龙成, 李兵斌, 蔡德芳. 二极管端面抽运固体激光器晶体棒与热沉接触热导研究. 物理学报, 2011, 60(1): 014212. doi: 10.7498/aps.60.014212
    [18] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [19] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究. 物理学报, 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [20] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能. 物理学报, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1017
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-06
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-10-05

基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用

  • 1. 吉首大学物理与机电工程学院, 吉首 416000;
  • 2. 怀化学院电气与信息工程学院, 怀化 418000
  • 通信作者: 黄勇刚, huang122012@163.com
    基金项目: 

    国家自然科学基金(批准号:11464014,11347215,11364020,11564013,11464013)、湖南省自然科学基金(批准号:2016JJ4073)和湖南省研究生科研创新项目(批准号:CX2017B718)资助的课题.

摘要: 任意微纳结构中量子点的自发辐射率和能级移动均可用并矢格林函数表达.当源点和场点在同一位置时,格林函数的实部是发散的.为解决这一发散问题,可采用重整化格林函数方法.本文提出一种计算重整化格林函数和散射格林函数的方法.该方法利用有限元,计算点电偶极子的辐射场,将其在量子点体积内做平均得到重整化的并矢格林函数,减去均匀空间中解析的重整化格林函数,得到重整化的散射格林函数.在均匀空间情况下,本方法所得数值结果与解析解一致.将该方法应用到银纳米球系统,以解析的散射格林函数作为参考,结果表明该方法能准确处理散射格林函数的重整化问题.将该方法应用到表面等离激元纳米腔中,发现有极大的自发辐射增强和能级移动,且该结果不依赖于量子点的体积.这些研究在光与物质相互作用领域具有积极的意义.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回