Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and characterization of homogeneity and fine pyramids on the textured single silicon crystal

Zhou Chun-Lan Wang Wen-Jing Zhao Lei Li Hai-Ling Diao Hong-Wei Cao Xiao-Ning

Citation:

Preparation and characterization of homogeneity and fine pyramids on the textured single silicon crystal

Zhou Chun-Lan, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Texturing of silicon surface is a major way to increase short circuit current and then improve the efficiency of silicon solar cells by effective light trapping.The anisotropic texturing of a (100) silicon surface was performed using tetramethyl ammonium hydroxide (TMAH) solution and NaClO additive in combination with continual ultrasonic wave treatment.The effect of ultrasonic wave and NaClO on the nucleation and growth of finc pyramids during the anisotropic texturing, and the effect of size of pyramids on the minority carrier lifetime of textured silicon wafer after the high temperature process were investigated.The enhancement of homogeneity of the smaller pyramids in the textured structure of silicon crystalline is obtained by adding continnal ultrasonic wave treatment to control the time of H2 bubble staying on the silicon surface and the speed of H2 detaching from the surface.The weighted mean reflectance for the solar spectrum AM 1.5G is 12.4% for the silicon surface with the optimal size of pyramids.After high temperature oxidation, the size of pyramid has an obvious exponential relation with the minority carrier lifetime of textured silicon wafer.
    [1]

    Yerokhov Y, Hezel R, Lipinski M, Ciach R, Nagel H, Mylyanych A, Panek P 2002 Solar Energ. Mater. Solar Cells 72 291

    [2]

    Zhao J, Wang A, Green M A, Ferraza F 1998 Appl. Phys. Lett. 73 1991

    [3]

    Campbell P, Green M A 2001 Solar Energ. Mater. Solar Cells 65 369

    [4]

    Rodriguez J M, Tobias I, Luque A 1997 Solar Energ. Mater. Solar Cells 45 241

    [5]

    Sopori B L, Pryor R A 1981 Conference Record of 15th IEEE Photovoltaic Specialists Conference Orlando, May 1981 11—15 p466

    [6]

    Kim J M, Kim Y K 2004 Solar Energ. Mater. Solar Cells 81 239

    [7]

    Kwona S, Jongheop Yi, Sewang Y, Joon S L, Donghwan K 2009 Curr. Appl. Phys. 10 1310

    [8]

    Hayoung P, Joon S L, Soonwoo K, Sewang Y, Donghwan K 2010 Curr. Appl. Phys. 10 113

    [9]

    Sarro P M, Brida D, Vlist W, Brida S 2000 Sensor. Actuat. A: Phys. 85 340

    [10]

    Yang C R, Chen P Y, Chiou Y C, Lee R T 2005 Sensor. Actuat. A: Phys. 119 263

    [11]

    Campbell S A, Coopert K, Dixont L, Earwakert R, Ports S N, Schiffrins D J 1995 J. Micromech. Microengng. 5 209

    [12]

    You H L, Zhang C F 2009 Chin. Phys. B 18 349

    [13]

    Green M A, Chong C M, Zhang F, Sproul A, Zolper J, Wenham S R 1988 Conference Record of the 20th IEEE Photovoltaics Specialists Conference p411 Las Vegas, September 26—30 1988

    [14]

    Schultz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderlochner E, Willeke G P 2004 Prog. Photovoltaics: Res. Appl. 12 553

    [15]

    Cousins P J, Cotter J E 2006 Solar Energy Materials & Solar Cells 90 228

    [16]

    Gangopadhyay U, Dhungel S K, Mondal A K, Sahaa H, Yi J 2007 Solar Energ Mater. Solar Cells 91 1147

    [17]

    Sun L F, Tang JY 2009 Appl. Surf. Sc. 255 9301

    [18]

    Hayoung P, Soonwoo K, Joon S L, Hee J L, SewangY, Donghwan K 2009 Solar Energ Mater. Solar Cells 93 1773

  • [1]

    Yerokhov Y, Hezel R, Lipinski M, Ciach R, Nagel H, Mylyanych A, Panek P 2002 Solar Energ. Mater. Solar Cells 72 291

    [2]

    Zhao J, Wang A, Green M A, Ferraza F 1998 Appl. Phys. Lett. 73 1991

    [3]

    Campbell P, Green M A 2001 Solar Energ. Mater. Solar Cells 65 369

    [4]

    Rodriguez J M, Tobias I, Luque A 1997 Solar Energ. Mater. Solar Cells 45 241

    [5]

    Sopori B L, Pryor R A 1981 Conference Record of 15th IEEE Photovoltaic Specialists Conference Orlando, May 1981 11—15 p466

    [6]

    Kim J M, Kim Y K 2004 Solar Energ. Mater. Solar Cells 81 239

    [7]

    Kwona S, Jongheop Yi, Sewang Y, Joon S L, Donghwan K 2009 Curr. Appl. Phys. 10 1310

    [8]

    Hayoung P, Joon S L, Soonwoo K, Sewang Y, Donghwan K 2010 Curr. Appl. Phys. 10 113

    [9]

    Sarro P M, Brida D, Vlist W, Brida S 2000 Sensor. Actuat. A: Phys. 85 340

    [10]

    Yang C R, Chen P Y, Chiou Y C, Lee R T 2005 Sensor. Actuat. A: Phys. 119 263

    [11]

    Campbell S A, Coopert K, Dixont L, Earwakert R, Ports S N, Schiffrins D J 1995 J. Micromech. Microengng. 5 209

    [12]

    You H L, Zhang C F 2009 Chin. Phys. B 18 349

    [13]

    Green M A, Chong C M, Zhang F, Sproul A, Zolper J, Wenham S R 1988 Conference Record of the 20th IEEE Photovoltaics Specialists Conference p411 Las Vegas, September 26—30 1988

    [14]

    Schultz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderlochner E, Willeke G P 2004 Prog. Photovoltaics: Res. Appl. 12 553

    [15]

    Cousins P J, Cotter J E 2006 Solar Energy Materials & Solar Cells 90 228

    [16]

    Gangopadhyay U, Dhungel S K, Mondal A K, Sahaa H, Yi J 2007 Solar Energ Mater. Solar Cells 91 1147

    [17]

    Sun L F, Tang JY 2009 Appl. Surf. Sc. 255 9301

    [18]

    Hayoung P, Soonwoo K, Joon S L, Hee J L, SewangY, Donghwan K 2009 Solar Energ Mater. Solar Cells 93 1773

Metrics
  • Abstract views:  8888
  • PDF Downloads:  1733
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2009
  • Accepted Date:  11 December 2009
  • Published Online:  05 April 2010

/

返回文章
返回