Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials

Wang Ping-Ya Zhang Jin-Feng Xue Jun-Shuai Zhou Yong-Bo Zhang Jin-Cheng Hao Yue

Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials

Wang Ping-Ya, Zhang Jin-Feng, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The lattice-matched InAlN/GaN structure is one kind of emerging material with high conductivity and used in GaN-based high electron mobility transistors (HEMTs). The transport properties of lattice-matched InAlN/GaN structure and InAlN/AlN/GaN structure are studied. The samples are grown using pulsed metal organic chemical vapor deposition on sapphire substates. Both structures show temperature-dependent Hall mobilities with a typical behavior of two-dimensional electron gas (2DEG). Theoretical analysis of the temperature dependence of mobility is carried out based on the comprehensive consideration of various scattering mechanisms such as acoustic deformation-potential, piezoelectric, polar optic phonon, dislocation, alloy disorder and interface roughness scattering. It is found that the dominant scattering mechanisms are the interface roughness scattering and the polar optic phonon scattering for both structures at room temperature. The insertion of AlN spacer layer into InAlN/GaN interface exempts 2DEG from alloy disorder scattering, more importantly results in a better interface, and restrains greatly interface roughness scattering. The influence of sheet density on 2DEG mobility is also considered, and the upper limit of density-dependent 2DEG mobility is given for lattice-matched InAlN/GaN and InAlN/AlN/GaN structures and compared with many reported experimental data.
    • Funds:
    [1]

    Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342

    [2]

    Katz O, Mistele D, Meyler B, Bahir G, Salzman J 2004 Electron. Lett. 40 1304

    [3]
    [4]

    Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503

    [5]
    [6]
    [7]

    Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese)[李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 物理学报 57 2450]

    [8]
    [9]

    Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106

    [10]

    Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D 2007 Phys. Stat. Sol. (a) 204 2019

    [11]
    [12]

    Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116

    [13]
    [14]

    Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102

    [15]
    [16]
    [17]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

    [18]

    Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese)[倪金玉、郝 跃、张进成、段焕涛、张金风 2009 物理学报 58 4925]

    [19]
    [20]
    [21]

    Hiroki M, Yokoyama H, Watanabe N, Kobayashi T 2006 Superlatt. Microstruc. 40 214

    [22]

    Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359

    [23]
    [24]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797

    [25]
    [26]
    [27]

    Zhang J F, Hao Y, Zhang J C, Ni J Y 2008 Sci. in China Ser. E 38 949 (in Chinese)[张金风、郝 跃、张进城、倪金玉 2008 中国科学E辑 38 949]

    [28]

    Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689

    [29]
    [30]
    [31]

    Jena D 2003 Ph.D. Thesis (University of California, Santa Barbara) p50

    [32]
    [33]

    Bougrov V, Levinshtein M E, Rumyantsev S L, Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York, John Wiley Sons) p1-30

    [34]
    [35]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [36]

    Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 15 th National Conference on Compound Semiconductor Materials, Microwave Device and Optoelectronic Device p54 (in Chinese)[刘 波、尹甲运、李 佳、冯志宏、冯震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 第54页]

    [37]
    [38]

    Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400

    [39]
    [40]
    [41]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

  • [1]

    Jeganathan K, Shimizu M, Okumura H, Yano Y, Akutsu N 2007 J. Cryst. Growth 304 342

    [2]

    Katz O, Mistele D, Meyler B, Bahir G, Salzman J 2004 Electron. Lett. 40 1304

    [3]
    [4]

    Kuzmik J, Pozzovivo G, Ostermaier C, Strasser G, Pogany D, Gornik E, Carlin J F, Gonschorek M, Feltin E, Grandjean N 2009 J. Appl. Phys. 106 124503

    [5]
    [6]
    [7]

    Li R F, Yang R X, Wu Y B, Zhang Z G, Xu N Y, Ma Y Q 2008 Acta Phys. Sin. 57 2450 (in Chinese)[李若凡、杨瑞霞、武一宾、张志国、许娜颖、马永强 2008 物理学报 57 2450]

    [8]
    [9]

    Gonschorek M, Carlin J F, Feltin E, Py M A, Grandjean N 2006 Appl. Phys. Lett. 89 062106

    [10]

    Kuzmik J, Carlin J F, Gonschorek M, Kostopoulos A, Konstantinidis G, Pozzovivo G, Golka S, Georgakilas A, Grandjean N, Strasser G, Pogany D 2007 Phys. Stat. Sol. (a) 204 2019

    [11]
    [12]

    Xie J Q, Ni X F, Wu M, Leach J H, zgr V, Morko H 2007 Appl. Phys. Lett. 91 132116

    [13]
    [14]

    Miyoshi M, Kuraoka Y, Tanaka M, Egawa T 2008 Appl. Phys. Express 1 081102

    [15]
    [16]
    [17]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

    [18]

    Ni J Y, Hao Y, Zhang J C, Duan H T, Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese)[倪金玉、郝 跃、张进成、段焕涛、张金风 2009 物理学报 58 4925]

    [19]
    [20]
    [21]

    Hiroki M, Yokoyama H, Watanabe N, Kobayashi T 2006 Superlatt. Microstruc. 40 214

    [22]

    Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A, Zhang J F 2011 J. Cryst. Growth 314 359

    [23]
    [24]

    Fang F F, Howard W E 1966 Phys. Rev. Lett. 16 797

    [25]
    [26]
    [27]

    Zhang J F, Hao Y, Zhang J C, Ni J Y 2008 Sci. in China Ser. E 38 949 (in Chinese)[张金风、郝 跃、张进城、倪金玉 2008 中国科学E辑 38 949]

    [28]

    Zhang J F, Mao W, Zhang J C, Hao Y 2008 Chin. Phys. B 17 2689

    [29]
    [30]
    [31]

    Jena D 2003 Ph.D. Thesis (University of California, Santa Barbara) p50

    [32]
    [33]

    Bougrov V, Levinshtein M E, Rumyantsev S L, Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York, John Wiley Sons) p1-30

    [34]
    [35]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [36]

    Liu B, Yin J Y, Li J, Feng Z H, Feng Z, Cai S J 2008 15 th National Conference on Compound Semiconductor Materials, Microwave Device and Optoelectronic Device p54 (in Chinese)[刘 波、尹甲运、李 佳、冯志宏、冯震、蔡树军 2008 第十五届全国化合物半导体、微波器件和光电器件学术会议论文集 第54页]

    [37]
    [38]

    Dadgar A, Schulze F, Blsing J, Diez A, Krost A, Neuburger M, Kohn E, Daumiller I, Kunze M 2004 Appl. Phys. Lett. 85 5400

    [39]
    [40]
    [41]

    Tlek R, Ilgaz A, Gkden S, Teke A, ztrk M K, Kasap M, zelik S, Arslan E, zbay E 2009 J. Appl. Phys. 105 013707

  • [1] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [2] Zhang Xue-Bing, Liu Nai-Zhang, Yao Ruo-He. Polar optical phonon scattering of two-dimensional electron gas in AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [3] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [4] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [5] Li Jia-Dong, Cheng Jun-Jie, Miao Bin, Wei Xiao-Wei, Zhang Zhi-Qiang, Li Hai-Wen, Wu Dong-Min. Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors. Acta Physica Sinica, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [6] LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU, G.Li, S.J.Chua. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
    [7] Li Qun, Chen Qian, Chong Jing. Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [8] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [9] Zhou Zhong-Tang, Guo Li-Wei, Xing Zhi-Gang, Ding Guo-Jian, Tan Chang-Lin, Lü Li, Liu Jian, Liu Xin-Yu, Jia Hai-Qiang, Chen Hong, Zhou Jun-Ming. The transport property of two dimensional electron gas in AlGaN/AlN/GaN structure. Acta Physica Sinica, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [10] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [11] Wang Xian-Bin, Zhao Zheng-Ping, Feng Zhi-Hong. Simulation study of two-dimensional electron gas in N-polar GaN/AlGaN heterostructure. Acta Physica Sinica, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [12] Zhou Wen-Zheng, Lin Tie, Shang Li-Yan, Huang Zhi-Ming, Cui Li-Jie, Li Dong-Lin, Gao Hong-Ling, Zeng Yi-Ping, Guo Shao-Ling, Gui Yong-Sheng, Chu Jun-Hao. Weak anti-localization in InAlAs/InGaAs/InAlAs high mobility two-dimensional electron gas systems. Acta Physica Sinica, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [13] Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong. Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current. Acta Physica Sinica, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [14] Kong Yue-Chan, Zheng You-Dou, Zhou Chun-Hong, Deng Yong-Zhen, Gu Shu-Lin, Shen Bo, Zhang Rong, Han Ping, Jiang Ruo-Lian, Shi Yi. Influence of polarizations and doping in AlGaN barrier on the two-dimensional electron-gas in AlGaN/GaN heterostruture. Acta Physica Sinica, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [15] Gao Hong-Ling, Li Dong-Lin, Zhou Wen-Zheng, Shang Li-Yan, Wang Bao-Qiang, Zhu Zhan-Ping, Zeng Yi-Ping. Subband electron properties of InGaAs/InAlAs high-electron-mobility transistors with different channel chickness. Acta Physica Sinica, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [16] Xu Xue-Mei, Peng Jing-Cui, Li Hong-Jian, Qu Shu, Luo Xiao-Hua. . Acta Physica Sinica, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [17] Zhu Bo, Gui Yong-Sheng, Zhou Wen-Zheng, Shang Li-Yan, Guo Shao-Ling, Chu Jun-Hao, Lü Jie, Tang Ning, Shen Bo, Zhang Fu-Jia. The weak antilocalization and localization phenomenon in AlGaN/GaN two-dimensional electron gas. Acta Physica Sinica, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [18] Kong Yue-Chan, Zheng You-Dou, Chu Rong-Ming, Gu Shu-Lin. Influnce of Al-content on the property of the two-dimensional electron gases in AlxGa1-xN/GaN heterostructures. Acta Physica Sinica, 2003, 52(7): 1756-1760. doi: 10.7498/aps.52.1756
    [19] Lv YONG-LIANG, ZHOU SHI-PING, XU DE-MING. ANALYSIS OF PROPERTIES OF HIGH-ELECTRON-MOBILITY-TRANSISTOR UNDER OPTICAL ILLUMI NATION. Acta Physica Sinica, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
    [20] Zhou Wen-Zheng, Lin Tie, Shang Li-Yan, Huang Zhi-Ming, Zhu Bo, Cui Li-Jie, Gao Hong-Ling, Li Dong-Lin, Guo Shao-Ling, Gui Yong-Sheng, Chu Jun-Hao. Observations on subband electron properties in In0.65Ga0.35As/In0.52Al0.48As MM-HEMT with Si δ-doped on the barriers. Acta Physica Sinica, 2007, 56(7): 4143-4147. doi: 10.7498/aps.56.4143
  • Citation:
Metrics
  • Abstract views:  5850
  • PDF Downloads:  877
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2011
  • Accepted Date:  22 February 2011
  • Published Online:  15 November 2011

Transport properties of two-dimensional electron gas in lattice-matched InAlN/GaN and InAlN/AlN/GaN materials

  • 1. Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China

Abstract: The lattice-matched InAlN/GaN structure is one kind of emerging material with high conductivity and used in GaN-based high electron mobility transistors (HEMTs). The transport properties of lattice-matched InAlN/GaN structure and InAlN/AlN/GaN structure are studied. The samples are grown using pulsed metal organic chemical vapor deposition on sapphire substates. Both structures show temperature-dependent Hall mobilities with a typical behavior of two-dimensional electron gas (2DEG). Theoretical analysis of the temperature dependence of mobility is carried out based on the comprehensive consideration of various scattering mechanisms such as acoustic deformation-potential, piezoelectric, polar optic phonon, dislocation, alloy disorder and interface roughness scattering. It is found that the dominant scattering mechanisms are the interface roughness scattering and the polar optic phonon scattering for both structures at room temperature. The insertion of AlN spacer layer into InAlN/GaN interface exempts 2DEG from alloy disorder scattering, more importantly results in a better interface, and restrains greatly interface roughness scattering. The influence of sheet density on 2DEG mobility is also considered, and the upper limit of density-dependent 2DEG mobility is given for lattice-matched InAlN/GaN and InAlN/AlN/GaN structures and compared with many reported experimental data.

Reference (41)

Catalog

    /

    返回文章
    返回