Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation

Zhu Yong Li Bao-Hua Xie Guo-Feng

Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation

Zhu Yong, Li Bao-Hua, Xie Guo-Feng
PDF
Get Citation
  • BaTiO3 is a kind of perovskite ferroelectric which has the advantages of ferroelectric property, piezoelectric property and radiation resistance. BaTiO3 thin films and devices have important applications in strong irradiation environment. The structure damage, especially the oxygen vacancy has a crucial influence on the response of ferroelectric under radiation. Molecular dynamics is used to simulate the formation process and the recovery process of defects in BaTiO3 under the impact of primary knock-on atom (PKA). The results show that the initial motion direction and energy of PKA have significant effects on the number of defects, and the averaged threshold displacement energies of Ba, O and Ti atom are 69 eV, 51 eV and 123 eV respectively. The calculated displacement energy is obviously larger than default value (25 eV) in SRIM code. Furthermore the SRIM code is used to simulate the proton irradiation damage in BaTiO3 thin film. The results show that the number of vacancy increases with the increase of proton energy, but the increase rate decreases, and the number of vacancy decreases obviously with the increase of incidence angle when it is more than 60°.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10702059).
    [1]

    Scott J F, Araujo C A, Brett H, McMillan L D, Shawabkeh A 1989 J. Appl. Phys. 66 1444

    [2]

    Colc Y M, Musseau O, Leray J L 1994 IEEE Trans. Nucl. Sci. 41 495

    [3]

    Scott J F 2004 Ferroelectric Memories(Beijing: Tsinghua Univerisy Press) (In Chinese) [朱劲松等译 2004 铁电存储器 (北京:清华大学出版社)]

    [4]

    Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734

    [5]

    Stanishevsky A, Nagaraj B,Melngailis J, Ramesh R, Khriachtchev L, McDaniel E 2002 J. Appl. Phys. 92 3275

    [6]

    Li Y S, Ma Y, Zhou Y C 2009 Appl. Phys. Lett. 94 042903

    [7]

    Cao H X, Zhang N 2008 Acta Phys. Sin. 57 6582 (in Chinese) [曹鸿霞, 张宁 2008 物理学报 57 6582]

    [8]

    Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 物理学报 60 046105]

    [9]

    Xiao S Q, Xie G F 2010 Acta Phys. Sin. 59 4808 (in Chinese) [肖松青, 谢国锋 2010 物理学报 59 4808]

    [10]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids. (Pergamon, New York)

    [11]

    Thomas B S, Marks N A, Begg B D 2007 Nucl. Instr. and Meth. B 254 211

    [12]

    Smith K L, Zaluzec N J 2005 J. Nucl. Mater. 336 261

    [13]

    Smith K L, Colella M, Cooper R, Vance E R 2003 J. Nucl. Mater. 321 19

  • [1]

    Scott J F, Araujo C A, Brett H, McMillan L D, Shawabkeh A 1989 J. Appl. Phys. 66 1444

    [2]

    Colc Y M, Musseau O, Leray J L 1994 IEEE Trans. Nucl. Sci. 41 495

    [3]

    Scott J F 2004 Ferroelectric Memories(Beijing: Tsinghua Univerisy Press) (In Chinese) [朱劲松等译 2004 铁电存储器 (北京:清华大学出版社)]

    [4]

    Gruverman A, Rodriguez B J, Nemanich R J, Kingon A I 2002 J. Appl. Phys. 92 2734

    [5]

    Stanishevsky A, Nagaraj B,Melngailis J, Ramesh R, Khriachtchev L, McDaniel E 2002 J. Appl. Phys. 92 3275

    [6]

    Li Y S, Ma Y, Zhou Y C 2009 Appl. Phys. Lett. 94 042903

    [7]

    Cao H X, Zhang N 2008 Acta Phys. Sin. 57 6582 (in Chinese) [曹鸿霞, 张宁 2008 物理学报 57 6582]

    [8]

    Ma Y, Sun L L, Zhou Y C 2011 Acta Phys. Sin. 60 046105 (in Chinese) [马颖, 孙玲玲, 周益春 2011 物理学报 60 046105]

    [9]

    Xiao S Q, Xie G F 2010 Acta Phys. Sin. 59 4808 (in Chinese) [肖松青, 谢国锋 2010 物理学报 59 4808]

    [10]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids. (Pergamon, New York)

    [11]

    Thomas B S, Marks N A, Begg B D 2007 Nucl. Instr. and Meth. B 254 211

    [12]

    Smith K L, Zaluzec N J 2005 J. Nucl. Mater. 336 261

    [13]

    Smith K L, Colella M, Cooper R, Vance E R 2003 J. Nucl. Mater. 321 19

  • [1] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [2] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei. Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [3] Jiang Qing, Cao Hai-Xia, Tao Yong-Mei. Impact of stress on the thermodynamic properties of ferroelectric films within the transverse Ising model. Acta Physica Sinica, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [4] Liu Shao-Jun, Chen Xiang-Rong, Wang Hai-Yan, Zhu Wen-Jun, He Hong-Liang, Song Zhen-Fei. The influence of helium bubble on the elastic properties of aluminum. Acta Physica Sinica, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [5] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [6] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [7] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [8] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [9] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [10] Liu Mei-Lin, Zhang Zong-Ning, Li Wei, Qi Yang, Zhang Lin, Zhao Qian. Deposition process of MgO thin film on MgO(001) surface simulated by molecular dynamics. Acta Physica Sinica, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [11] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
  • Citation:
Metrics
  • Abstract views:  1455
  • PDF Downloads:  650
  • Cited By: 0
Publishing process
  • Received Date:  11 February 2011
  • Accepted Date:  17 June 2011
  • Published Online:  15 April 2012

Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation

  • 1. Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 10702059).

Abstract: BaTiO3 is a kind of perovskite ferroelectric which has the advantages of ferroelectric property, piezoelectric property and radiation resistance. BaTiO3 thin films and devices have important applications in strong irradiation environment. The structure damage, especially the oxygen vacancy has a crucial influence on the response of ferroelectric under radiation. Molecular dynamics is used to simulate the formation process and the recovery process of defects in BaTiO3 under the impact of primary knock-on atom (PKA). The results show that the initial motion direction and energy of PKA have significant effects on the number of defects, and the averaged threshold displacement energies of Ba, O and Ti atom are 69 eV, 51 eV and 123 eV respectively. The calculated displacement energy is obviously larger than default value (25 eV) in SRIM code. Furthermore the SRIM code is used to simulate the proton irradiation damage in BaTiO3 thin film. The results show that the number of vacancy increases with the increase of proton energy, but the increase rate decreases, and the number of vacancy decreases obviously with the increase of incidence angle when it is more than 60°.

Reference (13)

Catalog

    /

    返回文章
    返回