搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属钨中氦行为的分子动力学模拟

汪俊 张宝玲 周宇璐 侯氢

金属钨中氦行为的分子动力学模拟

汪俊, 张宝玲, 周宇璐, 侯氢
PDF
导出引用
  • 采用分子动力学方法模拟了氦在金属钨中的扩散聚集行为. 首先,建立了氦与钨原子间相互作用势,短程部分采用ZBL势形式,长程部分采用从头算法数据,实现了两者之间的平滑连接. 通过计算氦在钨中不同间隙位的形成能发现,单个氦原子更易存在于金属钨中的四面体间隙位,这与最新的研究成果是一致的. 在4001200 K的温度范围内,考察了氦原子在金属钨中的扩散行为,获得了扩散迁移能,其值介于实验值和从头算法结果之间. 最后,研究了氦的聚集行为,从能量的角度考察了氦团簇形成初期的生长机理. 研究发现,在氦团簇形成初期,氦团簇对氦的结合能随着氦团簇的生长有逐渐增大的趋势,说明氦团簇吸收氦的能力逐渐增强.
    • 基金项目: 国家自然科学基金(批准号:10775101)和国家磁约束聚变项目(批准号:2009GB106004)资助的课题.
    [1]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampier W R, Whyte D G 2001 Nucl. Fusion 41 1967

    [2]

    Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K 2002 J. Nucl. Mater. 307-311 43

    [3]
    [4]
    [5]

    Barabash V, Federici G, Matera R, Raffray A R 1999 Phys. Scripta T 81 74

    [6]
    [7]

    Federici G, Wuerz H, Janeschitz G, Tivey R 2002 Fusion Eng. Des. 61-62 81

    [8]
    [9]

    Henriksson K O E, Nordlund K, Keinonen J 2006 Nucl. Instrum. Meth. B 244 377

    [10]

    Ge C C, Zhou Z J, Song S X, Du J, Zhong Z H 2007 J. Nucl. Mater.363-365 1211

    [11]
    [12]

    Kornelsen E V 1972 Radiat. Eff. 13 227

    [13]
    [14]
    [15]

    Kornelsen E V, van Gorkum A A 1980 J. Nucl. Mater. 92 79

    [16]

    Walls J M, Boothby R M, Southworth H N 1976 Surf. Sci. 61 419

    [17]
    [18]

    Nicholson R J K, Walls J M 1978 J. Nucl. Mater. 76-77 251

    [19]
    [20]
    [21]

    Henriksson K O E, Nordlund K, Keinonen J, Sundholm D, Patzschkze M 2004 Phys. Scripta T 108 95

    [22]
    [23]

    Becquart C S, Domain C 2006 Phys. Rev. Lett. 97 196402

    [24]
    [25]

    Becquart C S, Domain C 2007 Nucl. Instrum. Meth. B 255 23

    [26]

    Lee S C, Choi J H, Lee J G 2009 J. Nucl. Mater. 383 244

    [27]
    [28]
    [29]

    Nieminen R M 1991 Fundamentals Aspects of Inert Gases in Solid (New York: Plenum) p3

    [30]
    [31]

    Derlet P M, Nguyen-Manh D, Dudarev S L 2007 Phys. Rev. B 76 054107

    [32]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon)

    [33]
    [34]
    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Winte G 1995 Genetic Algorithm in Engineering and Science (New York: Wiley) p1

    [37]
    [38]
    [39]

    Finnis M W, Agnew P, Foreman A J E 1991 Phys. Rev. B 44 567.

    [40]

    Hou Q, Hou M, Bardotti L, Prevel B, Melinon P, Perez A 2000 Phys. Rev. B 62 2825

    [41]
    [42]

    Boisvert G, Lewis L J 1996 Phys. Rev. B 54 2880

    [43]
    [44]

    Wagner A, Seidman D N 1979 Phys. Rev. Lett. 42 515

    [45]
    [46]
    [47]

    Amano J, Seidman D N 1984 J. Appl. Phys. 56 983

    [48]
    [49]

    Soltan A S, Vassen R, Jung P 1991 J. Appl. Phys. 70 793

    [50]

    Xie Z, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159(in Chinese)[谢 朝、侯 氢、汪 俊、孙铁英、龙兴贵、罗顺忠 2008 物理学报 57 5159]

    [51]
    [52]
    [53]

    Wang J, Hou Q, Sun T Y, Long X G, Wu X C, Luo S Z 2007 J. Appl. Phys. 102 093510

    [54]
    [55]

    Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [56]
    [57]

    Wang J, Hou Q 2009 Acta Phys. Sin. 58 6408(in Chinese)[汪 俊、侯 氢 2009 物理学报 58 6408]

  • [1]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampier W R, Whyte D G 2001 Nucl. Fusion 41 1967

    [2]

    Bolt H, Barabash V, Federici G, Linke J, Loarte A, Roth J, Sato K 2002 J. Nucl. Mater. 307-311 43

    [3]
    [4]
    [5]

    Barabash V, Federici G, Matera R, Raffray A R 1999 Phys. Scripta T 81 74

    [6]
    [7]

    Federici G, Wuerz H, Janeschitz G, Tivey R 2002 Fusion Eng. Des. 61-62 81

    [8]
    [9]

    Henriksson K O E, Nordlund K, Keinonen J 2006 Nucl. Instrum. Meth. B 244 377

    [10]

    Ge C C, Zhou Z J, Song S X, Du J, Zhong Z H 2007 J. Nucl. Mater.363-365 1211

    [11]
    [12]

    Kornelsen E V 1972 Radiat. Eff. 13 227

    [13]
    [14]
    [15]

    Kornelsen E V, van Gorkum A A 1980 J. Nucl. Mater. 92 79

    [16]

    Walls J M, Boothby R M, Southworth H N 1976 Surf. Sci. 61 419

    [17]
    [18]

    Nicholson R J K, Walls J M 1978 J. Nucl. Mater. 76-77 251

    [19]
    [20]
    [21]

    Henriksson K O E, Nordlund K, Keinonen J, Sundholm D, Patzschkze M 2004 Phys. Scripta T 108 95

    [22]
    [23]

    Becquart C S, Domain C 2006 Phys. Rev. Lett. 97 196402

    [24]
    [25]

    Becquart C S, Domain C 2007 Nucl. Instrum. Meth. B 255 23

    [26]

    Lee S C, Choi J H, Lee J G 2009 J. Nucl. Mater. 383 244

    [27]
    [28]
    [29]

    Nieminen R M 1991 Fundamentals Aspects of Inert Gases in Solid (New York: Plenum) p3

    [30]
    [31]

    Derlet P M, Nguyen-Manh D, Dudarev S L 2007 Phys. Rev. B 76 054107

    [32]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (New York: Pergamon)

    [33]
    [34]
    [35]

    Delley B 1990 J. Chem. Phys. 92 508

    [36]

    Winte G 1995 Genetic Algorithm in Engineering and Science (New York: Wiley) p1

    [37]
    [38]
    [39]

    Finnis M W, Agnew P, Foreman A J E 1991 Phys. Rev. B 44 567.

    [40]

    Hou Q, Hou M, Bardotti L, Prevel B, Melinon P, Perez A 2000 Phys. Rev. B 62 2825

    [41]
    [42]

    Boisvert G, Lewis L J 1996 Phys. Rev. B 54 2880

    [43]
    [44]

    Wagner A, Seidman D N 1979 Phys. Rev. Lett. 42 515

    [45]
    [46]
    [47]

    Amano J, Seidman D N 1984 J. Appl. Phys. 56 983

    [48]
    [49]

    Soltan A S, Vassen R, Jung P 1991 J. Appl. Phys. 70 793

    [50]

    Xie Z, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159(in Chinese)[谢 朝、侯 氢、汪 俊、孙铁英、龙兴贵、罗顺忠 2008 物理学报 57 5159]

    [51]
    [52]
    [53]

    Wang J, Hou Q, Sun T Y, Long X G, Wu X C, Luo S Z 2007 J. Appl. Phys. 102 093510

    [54]
    [55]

    Wang J, Hou Q, Sun T Y, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [56]
    [57]

    Wang J, Hou Q 2009 Acta Phys. Sin. 58 6408(in Chinese)[汪 俊、侯 氢 2009 物理学报 58 6408]

  • [1] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟. 物理学报, 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [2] 汪俊, 侯氢. 金属钛中氦团簇生长行为的分子动力学研究. 物理学报, 2009, 58(9): 6408-6412. doi: 10.7498/aps.58.6408
    [3] 姜少宁, 万发荣, 龙毅, 刘传歆, 詹倩, 大貫惣明. 氦、氘对纯铁辐照缺陷的影响. 物理学报, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [4] 冉琴, 王欢, 钟睿, 伍建春, 邹宇, 汪俊. 钨中不同构型的双自间隙原子扩散行为研究. 物理学报, 2019, 68(12): 126701. doi: 10.7498/aps.68.20190310
    [5] 梁晋洁, 高宁, 李玉红. 体心立方Fe中\begin{document}${ \langle 100 \rangle}$\end{document}位错环对微裂纹扩展影响的分子动力学研究. 物理学报, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [6] 崔振国, 勾成俊, 侯氢, 毛莉, 周晓松. 低能中子在锆中产生的辐照损伤的计算机模拟研究. 物理学报, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [7] 贺新福, 杨文, 樊胜. 论FeCr合金辐照损伤的多尺度模拟. 物理学报, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [8] 朱勇, 李宝华, 谢国锋. 质子对BaTiO3薄膜辐照损伤的计算机模拟. 物理学报, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [9] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [10] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用. 物理学报, 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [11] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [12] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [13] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [14] 司丽娜, 郭丹, 雒建斌. 氧化硅团簇切削单晶硅粗糙峰的分子动力学模拟研究. 物理学报, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [15] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟. 物理学报, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
    [16] 王 音, 李 鹏, 宁西京. C36团簇自组装的分子动力学研究. 物理学报, 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [17] 张春艳, 刘显明. 氢团簇在飞秒强激光场中的动力学行为. 物理学报, 2015, 64(16): 163601. doi: 10.7498/aps.64.163601
    [18] 唐 鑫, 张 超, 张庆瑜. Cu(111)三维表面岛对表面原子扩散影响的分子动力学研究. 物理学报, 2005, 54(12): 5797-5803. doi: 10.7498/aps.54.5797
    [19] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [20] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
  • 引用本文:
    Citation:
计量
  • 文章访问数:  5355
  • PDF下载量:  1400
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-12
  • 修回日期:  2011-01-05
  • 刊出日期:  2011-05-05

金属钨中氦行为的分子动力学模拟

  • 1. 四川大学原子核科学技术研究所辐射物理及技术教育部重点实验室,成都 610064
    基金项目: 

    国家自然科学基金(批准号:10775101)和国家磁约束聚变项目(批准号:2009GB106004)资助的课题.

摘要: 采用分子动力学方法模拟了氦在金属钨中的扩散聚集行为. 首先,建立了氦与钨原子间相互作用势,短程部分采用ZBL势形式,长程部分采用从头算法数据,实现了两者之间的平滑连接. 通过计算氦在钨中不同间隙位的形成能发现,单个氦原子更易存在于金属钨中的四面体间隙位,这与最新的研究成果是一致的. 在4001200 K的温度范围内,考察了氦原子在金属钨中的扩散行为,获得了扩散迁移能,其值介于实验值和从头算法结果之间. 最后,研究了氦的聚集行为,从能量的角度考察了氦团簇形成初期的生长机理. 研究发现,在氦团簇形成初期,氦团簇对氦的结合能随着氦团簇的生长有逐渐增大的趋势,说明氦团簇吸收氦的能力逐渐增强.

English Abstract

参考文献 (57)

目录

    /

    返回文章
    返回