Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The influence of new additive in alkaline solution on the shape of pyramid on the monocrystal Si surface

Tian Jia-Tong Feng Shi-Meng Wang Kun-Xia Xu Hua-Tian Yang Shu-Quan Liu Feng Huang Jian-Hua Pei Jun

The influence of new additive in alkaline solution on the shape of pyramid on the monocrystal Si surface

Tian Jia-Tong, Feng Shi-Meng, Wang Kun-Xia, Xu Hua-Tian, Yang Shu-Quan, Liu Feng, Huang Jian-Hua, Pei Jun
PDF
Get Citation
  • The controlling technology of micro-structure on the surface of monocrystal silicon is a hot spot issue in semiconductor and solar cell fields because the conversion efficiency of monocrystal solar cell is affected by the structure of pyramid. With the traditional alkaline solution, monocrystal Si surface is easily textured, and becomes the surface full of the pyramid. However, it is difficult to control the sizes, the shapes and the distribution of pyramids in the process. In this paper, we discuss how a new additive influences the sizes, and the shapes of pyramids during the etching process. In experiment, silicon is etched in traditional alkaline solution with addition of the new additive at a fixed temperature and time. Samples are scanned by SEM. The SEM result shows that the samples are uniformly-densely filled with pyramids with smooth edges. The size of pyramid is smaller than that etched in the traditional alkaline solution. The etched surface is covered by pyramids with 24m in size. The reflectance spectrum of the textured surface is measured. The measured reflectance decreases to 12.51%. These experimental results show that the new additive can effectively cantrol the sizes and the distribution of pyramids on the silicon surface during the texturing process, which is very meaningful to control the textured structures of single crystal silicon surface.
      Corresponding author: Feng Shi-Meng, smfeng@sjtu.edu.cn
    • Funds: Project supported by the Shanghai Aerospace Fund (Grant No.GC072003).
    [1]

    Xi Z Q,Yang D R,Que D L 2003 Solar Energy Materials and Solar Cells 77 255

    [2]

    Vallejo B,González-Mañas M,Martínez-López J 2007 Solar Energy 81 565

    [3]

    Xi Z Q,Yang D R,Wu D,Chen J 2004 Renewable Energy 29 2101

    [4]

    Singh P K,Kumar R,Lal M,Singh S N,Das B K 2001 Solar Energy Materials and Solar Cells 70 103

    [5]

    Li H L,Zhao L,Diao H W,Zhou C L,Wang W J 2010 Journal of Synthetic Crystal 39 856 (in Chinese) [李海玲,赵雷,刁宏伟,周春兰,王文静 2010 人工晶体学报 39 856]

    [6]

    Sundaram K B,Arun V,Ganesh S 2005 Microelectronic Engineering 77 230

    [7]

    You J S,Kim D,Huh J Y 2001 Solar Energy Materials and Solar Cells 66 37

    [8]

    Iencinella D,Centurioni E,Rizzoli R,Zignani F 2005 Solar Energy Materials and Solar Cells 87 725

    [9]

    Papet P,Nichiporuk O,Kaminski A,Rozier Y,Kraiem J,Lelievre J F,Chaumartin A,Fave A,Lemiti M 2006 Solar Energy Materials and Solar Cells 90 2319

    [10]

    Papet P,Nichiporuk O,Fave A,Kaminski A,Bazer-Bachi B,Lemiti M 2006 Materials Science-Poland 24 1044

    [11]

    Vazsonyi E,De Clercq K,Einhaus R 1999 Solar Energy Materials and Solar Cells 57 179

    [12]

    Vazsonyi E,De Clercq K,Einhaus R,van Kerschaver E,Said K,Poortmans J,Szlufcik J,Nijs J 1999 Solar Energy Materials and Solar Cells 57 179

    [13]

    Zhou C L,Wang W J,Zhao L,Li H L,Diao H W,Cao X N 2010 Acta Phys.Sin.59 5777 ( in Chinese) [周春兰,王文静,赵雷,李海玲,刁宏伟,曹晓宁 2010 物理学报 59 5777]

    [14]

    Zhou C L,Li X D,Wang W J,Zhao L,Li H L,Diao H W,Cao XN 2011 Acta Phys.Sin.60 038201 (in Chinese) [周春兰,励旭东,王文静,赵雷,李海玲,刁宏伟,曹晓宁 2011 物理学报 60 038201]

  • [1]

    Xi Z Q,Yang D R,Que D L 2003 Solar Energy Materials and Solar Cells 77 255

    [2]

    Vallejo B,González-Mañas M,Martínez-López J 2007 Solar Energy 81 565

    [3]

    Xi Z Q,Yang D R,Wu D,Chen J 2004 Renewable Energy 29 2101

    [4]

    Singh P K,Kumar R,Lal M,Singh S N,Das B K 2001 Solar Energy Materials and Solar Cells 70 103

    [5]

    Li H L,Zhao L,Diao H W,Zhou C L,Wang W J 2010 Journal of Synthetic Crystal 39 856 (in Chinese) [李海玲,赵雷,刁宏伟,周春兰,王文静 2010 人工晶体学报 39 856]

    [6]

    Sundaram K B,Arun V,Ganesh S 2005 Microelectronic Engineering 77 230

    [7]

    You J S,Kim D,Huh J Y 2001 Solar Energy Materials and Solar Cells 66 37

    [8]

    Iencinella D,Centurioni E,Rizzoli R,Zignani F 2005 Solar Energy Materials and Solar Cells 87 725

    [9]

    Papet P,Nichiporuk O,Kaminski A,Rozier Y,Kraiem J,Lelievre J F,Chaumartin A,Fave A,Lemiti M 2006 Solar Energy Materials and Solar Cells 90 2319

    [10]

    Papet P,Nichiporuk O,Fave A,Kaminski A,Bazer-Bachi B,Lemiti M 2006 Materials Science-Poland 24 1044

    [11]

    Vazsonyi E,De Clercq K,Einhaus R 1999 Solar Energy Materials and Solar Cells 57 179

    [12]

    Vazsonyi E,De Clercq K,Einhaus R,van Kerschaver E,Said K,Poortmans J,Szlufcik J,Nijs J 1999 Solar Energy Materials and Solar Cells 57 179

    [13]

    Zhou C L,Wang W J,Zhao L,Li H L,Diao H W,Cao X N 2010 Acta Phys.Sin.59 5777 ( in Chinese) [周春兰,王文静,赵雷,李海玲,刁宏伟,曹晓宁 2010 物理学报 59 5777]

    [14]

    Zhou C L,Li X D,Wang W J,Zhao L,Li H L,Diao H W,Cao XN 2011 Acta Phys.Sin.60 038201 (in Chinese) [周春兰,励旭东,王文静,赵雷,李海玲,刁宏伟,曹晓宁 2011 物理学报 60 038201]

  • [1] Liu Shi-Yuan, Zhang Chuan-Wei, Gu Hua-Yong, Shen Hong-Wei. A fast algorithm for reflectivity calculation of micro/nano deep trench structures by corrected effective medium approximation. Acta Physica Sinica, 2008, 57(9): 5996-6001. doi: 10.7498/aps.57.5996
    [2] Guan Qing-Feng, Lü Peng, Wang Xiao-Dong, Wan Ming-Zhen, Gu Qian-Qian, Chen Bo. Microstructures of Mo/Si multilayer mirror after proton irradiation. Acta Physica Sinica, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [3] Si Li-Na, Guo Dan, Luo Jian-Bin. A molecular dynamics study of silica cluster cutting single crystalline silicon asperity. Acta Physica Sinica, 2012, 61(16): 168103. doi: 10.7498/aps.61.168103
    [4] Bao Ling-Dong, Han Jing-Hua, Duan Tao, Sun Nian-Chun, Gao Xiang, Feng Guo-Ying, Yang Li-Ming, Niu Rui-Hua, Liu Quan-Xi. Investigation of thermodynamic progress of silicon ablated by nanosecond uv repetitive pulse laser. Acta Physica Sinica, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [5] Zhou Chun-Lan, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. Preparation and characterization of homogeneity and fine pyramids on the textured single silicon crystal. Acta Physica Sinica, 2010, 59(8): 5777-5783. doi: 10.7498/aps.59.5777
    [6] Xu Ling-Mao, Gao Chao, Dong Peng, Zhao Jian-Jiang, Ma Xiang-Yang, Yang De-Ren. Dislocation motion during rapid thermal processing of single-crystalline silicon wafers. Acta Physica Sinica, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [7] Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Wang Xiao-Hui, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [8] Feng Su-Juan, Shang Liang, Mao Qing-He. Continuously adjusting the reflectivity of fiber loop mirror using a polarization controller. Acta Physica Sinica, 2007, 56(8): 4677-4685. doi: 10.7498/aps.56.4677
    [9] Huang Ya-Ping, Yun Feng, Ding Wen, Wang Yue, Wang Hong, Zhao Yu-Kun, Zhang Ye, Guo Mao-Feng, Hou Xun, Liu Shuo. The reflectivity and ohmic contact resistivity of Ni/Ag/Ti/Au in contact with p-GaN. Acta Physica Sinica, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [10] Lü Zhi-Wei, Wang Xiao-Hui, Lin Dian-Yang, Wang Chao, Zhao Xiao-Yan, Tang Xiu-Zhang, Zhang Hai-Feng, Shan Yu-Sheng. A study on the stability of stimulated Brillouin scattering for KrF laser. Acta Physica Sinica, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
  • Citation:
Metrics
  • Abstract views:  2167
  • PDF Downloads:  705
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2011
  • Accepted Date:  11 July 2011
  • Published Online:  20 March 2012

The influence of new additive in alkaline solution on the shape of pyramid on the monocrystal Si surface

    Corresponding author: Feng Shi-Meng, smfeng@sjtu.edu.cn
  • 1. Physics Department of Shanghai Jiaotong University, Shanghai 200240, China;
  • 2. Shanghai Academy of Spaceflight Technology, Shanghai 200082, China;
  • 3. Shanghai JiaoTong LinYang Solar Photovoltaic R & D Center, Shanghai 201109, China;
  • 4. Shanghai Shenzhou New Energy Development Co., Ltd, Shanghai 201112, China
Fund Project:  Project supported by the Shanghai Aerospace Fund (Grant No.GC072003).

Abstract: The controlling technology of micro-structure on the surface of monocrystal silicon is a hot spot issue in semiconductor and solar cell fields because the conversion efficiency of monocrystal solar cell is affected by the structure of pyramid. With the traditional alkaline solution, monocrystal Si surface is easily textured, and becomes the surface full of the pyramid. However, it is difficult to control the sizes, the shapes and the distribution of pyramids in the process. In this paper, we discuss how a new additive influences the sizes, and the shapes of pyramids during the etching process. In experiment, silicon is etched in traditional alkaline solution with addition of the new additive at a fixed temperature and time. Samples are scanned by SEM. The SEM result shows that the samples are uniformly-densely filled with pyramids with smooth edges. The size of pyramid is smaller than that etched in the traditional alkaline solution. The etched surface is covered by pyramids with 24m in size. The reflectance spectrum of the textured surface is measured. The measured reflectance decreases to 12.51%. These experimental results show that the new additive can effectively cantrol the sizes and the distribution of pyramids on the silicon surface during the texturing process, which is very meaningful to control the textured structures of single crystal silicon surface.

Reference (14)

Catalog

    /

    返回文章
    返回