Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isotropic negative permeability metamaterials and left-handed metamaterials based on miniature structure

Liu Ya-Hong Liu Hui Zhao Xiao-Peng

Isotropic negative permeability metamaterials and left-handed metamaterials based on miniature structure

Liu Ya-Hong, Liu Hui, Zhao Xiao-Peng
PDF
Get Citation
  • We propose an isotropic structure based on double split-ring resonator. We investigate experimentally and numerically the electromagnetic resonant properties of the proposed structure. The result shows that when the electromagnetic wave transmits in the directions parallel and perpendicular to the plane of the split ring resonator, respectively, the resonant bands having the negative permeability both arise at the same frequencies. However, when the electromagnetic wave transmits with oblique angle, the resonant characteristic is still unchanged. That is to say, resonant characteristic of the proposed structure is independent of incidence angle. This result indicates that the proposed structure is an isotropic medium. Combining the proposed double split-ring resonator structure with the wires, the left-handed metamaterial with negative refractive index can be obtained. In addition, the proposed structure has the merit of the miniaturization due to adding the metallic via-hole, which can increase the electric length of the structure. As a result, the resonant frequency of the structure shifts toward lower frequency greatly without increasing the dimension of the structure, and then the structure is still compact in the low frequency case. The introduction of the metallic via-hole can reduce the dimension of the structure by 50%. Therefore, the proposed structure will be a good candidate in the microwave applications such as antennas, filter, among others.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50872113, 50936002) and the Foundation for Fundamental Research of Northwestern Polytechnical University, China (Grant No. JC201154).
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [4]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [6]

    Zhao X P, Zhao Q, Zhang F L, Zhao W, Liu Y H 2006 Chin. Phys. Lett. 23 99

    [7]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [8]

    Gong B Y, Zhao X P 2011 Opt. Express 19 289

    [9]

    Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [10]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [11]

    Liu Y H, Song J, Luo C R, Fu Q H, Zhao X P 2008 Acta Phys. Sin. 57 934 (in Chinese) [刘亚红, 宋娟, 罗春荣, 付全红, 赵晓鹏 2008 物理学报 57 934]

    [12]

    Zhu W R, Zhao X P, Ji N 2007 Appl. Phys. Lett. 90 011911

    [13]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [14]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [15]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351

    [16]

    Zhang S, Fan W J, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402

    [17]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [20]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [21]

    Furlani E P, Baev A 2009 Phys. Rev. E 79 026607

    [22]

    Jin Y, He S L 2010 Opt. Express 18 16587

    [23]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Express 15 11536

    [24]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. E 75 235114

    [25]

    Zhou J F, Koschny T, Zhang L, Tuttle G, Soukoulis C M 2006 Appl. Phys. Lett. 88 221103

    [26]

    Baena J D, Jelinek L, Marqués R, Mock J J, Gollub J, Smith D R 2007 Appl. Phys. Lett. 91 191105

    [27]

    Casse B D F, Moser H O, Lee J W, Bahou M, Inglis S, Jian L K 2007 Appl. Phys. Lett. 90 254106

    [28]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J Jr, Kong J A 2004 Phys. Rev. E 70 016608

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [4]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Zhou X, Fu Q H, Zhao J, Yang Y, Zhao X P 2006 Opt. Express 14 7188

    [6]

    Zhao X P, Zhao Q, Zhang F L, Zhao W, Liu Y H 2006 Chin. Phys. Lett. 23 99

    [7]

    Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红, 罗春荣, 赵晓鹏 2007 物理学报 56 5883]

    [8]

    Gong B Y, Zhao X P 2011 Opt. Express 19 289

    [9]

    Zhou X, Zhao X P 2007 Appl. Phys. Lett. 91 181908

    [10]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147

    [11]

    Liu Y H, Song J, Luo C R, Fu Q H, Zhao X P 2008 Acta Phys. Sin. 57 934 (in Chinese) [刘亚红, 宋娟, 罗春荣, 付全红, 赵晓鹏 2008 物理学报 57 934]

    [12]

    Zhu W R, Zhao X P, Ji N 2007 Appl. Phys. Lett. 90 011911

    [13]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [14]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [15]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351

    [16]

    Zhang S, Fan W J, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402

    [17]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [18]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602

    [19]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [20]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [21]

    Furlani E P, Baev A 2009 Phys. Rev. E 79 026607

    [22]

    Jin Y, He S L 2010 Opt. Express 18 16587

    [23]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Express 15 11536

    [24]

    Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M, Economou E N 2007 Phys. Rev. E 75 235114

    [25]

    Zhou J F, Koschny T, Zhang L, Tuttle G, Soukoulis C M 2006 Appl. Phys. Lett. 88 221103

    [26]

    Baena J D, Jelinek L, Marqués R, Mock J J, Gollub J, Smith D R 2007 Appl. Phys. Lett. 91 191105

    [27]

    Casse B D F, Moser H O, Lee J W, Bahou M, Inglis S, Jian L K 2007 Appl. Phys. Lett. 90 254106

    [28]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [29]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J Jr, Kong J A 2004 Phys. Rev. E 70 016608

  • [1] Anisotropic Dissipation in a Dipolar Bose-Einstein Condensate. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200025
    [2] The influence of the secondary electron emission characteristic of dielectric materials on the microwave breakdown. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200026
    [3] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [4] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
  • Citation:
Metrics
  • Abstract views:  1740
  • PDF Downloads:  934
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2011
  • Accepted Date:  28 April 2012
  • Published Online:  20 April 2012

Isotropic negative permeability metamaterials and left-handed metamaterials based on miniature structure

  • 1. School of Science, Northwestern Polytechnical University, Xi'an 710072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 50872113, 50936002) and the Foundation for Fundamental Research of Northwestern Polytechnical University, China (Grant No. JC201154).

Abstract: We propose an isotropic structure based on double split-ring resonator. We investigate experimentally and numerically the electromagnetic resonant properties of the proposed structure. The result shows that when the electromagnetic wave transmits in the directions parallel and perpendicular to the plane of the split ring resonator, respectively, the resonant bands having the negative permeability both arise at the same frequencies. However, when the electromagnetic wave transmits with oblique angle, the resonant characteristic is still unchanged. That is to say, resonant characteristic of the proposed structure is independent of incidence angle. This result indicates that the proposed structure is an isotropic medium. Combining the proposed double split-ring resonator structure with the wires, the left-handed metamaterial with negative refractive index can be obtained. In addition, the proposed structure has the merit of the miniaturization due to adding the metallic via-hole, which can increase the electric length of the structure. As a result, the resonant frequency of the structure shifts toward lower frequency greatly without increasing the dimension of the structure, and then the structure is still compact in the low frequency case. The introduction of the metallic via-hole can reduce the dimension of the structure by 50%. Therefore, the proposed structure will be a good candidate in the microwave applications such as antennas, filter, among others.

Reference (29)

Catalog

    /

    返回文章
    返回