Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the light absorption enhancement in polymer solar cell with TiO2 optical spacer

Li Guo-Long Li Jin Zhen Hong-Yu

Analysis of the light absorption enhancement in polymer solar cell with TiO2 optical spacer

Li Guo-Long, Li Jin, Zhen Hong-Yu
PDF
Get Citation
  • The thickness of the active layer is limited by its low carrier mobility in the polymer solar cell composed of the blend bulk-heterojunction formed by conjugated polymer as donor material and fullerene as acceptor material, which can affect the light absorption in the polymer solar cell. TiO2 inserted into polymer solar cell as optical spacer can redistribute the electromagnetic field inside the device and enhance the light absorption of it. In this paper, light intensity and absorption inside the devices with different thicknesses of P3HT:PCBM layer and TiO2 layer are calculated based on transfer matrix method. Theoretical analysis shows that inserting 10 nm TiO2 into the device can increase 16.3% light absorption, simultaneously thinning the active layer by 25 nm and the thickness of active layer will not apparently reduce the dissociation rate of the excitons. With the device structure of ITO (100 nm)/PEDOT:PSS (40 nm)/P3HT:PCBM/TiO2/LiF (1 nm)/Al (120 nm), the optimal thicknesses of the active layer and TiO2 are 75 nm and 10 nm respectively, which is confirmed by the experimental results from the devices with three different structures.
    • Funds: Project supported by the Science and Technology Project of Ningxia, China.
    [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [2]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nat. Photonics 3 297

    [3]

    Kim J Y, Lee K, Coates N E, Daniel M, Nguyen T Q, Mark D, Heeger A J 2007 Science 317 222

    [4]

    Chen D, Atsuhiro N, Wei D, Dennis N, Thomas P R 2011 Nano Lett. 11 561

    [5]

    Oskar A, Christoph L, Siegfried B 2011 Phys. Rev. B 84 085208

    [6]

    Melzer C, Koop E, Mihailetchi V D, Blom P W M 2004 Adv. Funct. Mater. 14 865

    [7]

    Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405

    [8]

    Pettersson L A A A, Roman L S, Olle I 1999 J. Appl. Phys. 86 487

    [9]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2010 Acta Phys. Sin. 60 117106 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2010 物理学报 60 117106]

    [10]

    Gilot J, Barbu I, Wienk M M, Janssen R A J 2007 Appl. Phys. Lett. 91 113520

    [11]

    Snaith H J, Greenham N C, Friend R H 2004 Adv. Mater. 16 1640

    [12]

    Hänsel H, Zettl H, Krausch G, Kisselev R, Thelakkat M, Schmidt H W 2003 Adv. Mater. 15 2056

    [13]

    Hayakawa A, Yoshikawa O, Fujieda T, Uehara K, Yoshikawa S 2007 Appl. Phys. Lett. 90 163517

    [14]

    Lee K M, Hsu C Y, Chiu W H, Tsui M C, TungY L, Tsai S Y, Ho K C 2009 Sol. Energy Mater. Sol. Cells 93 2003

    [15]

    Beek W J E, Wienk M M, Janssen R A J 2004 Adv. Mater. 16 1009

    [16]

    Long Y B 2009 Appl. Phys. Lett. 95 193301

    [17]

    Schulze K, Uhrich C, Schueppel R, Leo K, Pfeiffer M, Brier E, Reinhold E, Baeuerle P 2006 Adv. Mater. 18 2872

    [18]

    Andersson B V, Huang D M, Moulé A J, Olle I 2009 Appl. Phys. Lett. 94 043302

    [19]

    Macleod H A 2001 Thin-Film Optical Filters (3rd Ed.) (Bristol: Institute of Physics Publishing)

    [20]

    Meng X J, Cheng J G, Li B, Tang J, Ye H J, Guo S L, Chu J H 2000 Acta Phys. Sin. 49 811 (in Chinese) [孟祥建, 程建功, 李标, 唐军, 叶红娟, 郭少令, 褚君浩 2000 物理学报 49 811]

    [21]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [22]

    Braun C L 1984 J. Chem. Phys. 80 4157

    [23]

    Zhu D X, Shen W D, Ye H, Liu X, Zhen H Y 2008 J. Phys. D: Appl. Phys. 41 235104

    [24]

    Cheng H M, Ma J M, Zhao Z G, Qi L M 1995 Chem. Mater. 7 663

    [25]

    Kim J Y, Kim S H, Lee H H, Lee K, Ma W L, Gong X, Heeger A J 2006 Adv. Mater. 18 572

    [26]

    Koster L J A, Smits E C P, Mihailetchi V D, Blom P W M 2005 Phys. Rev. B 72 085205

  • [1]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [2]

    Park S H, Roy A, Beaupre S, Cho S, Coates N, Moon J S, Moses D, Leclerc M, Lee K, Heeger A J 2009 Nat. Photonics 3 297

    [3]

    Kim J Y, Lee K, Coates N E, Daniel M, Nguyen T Q, Mark D, Heeger A J 2007 Science 317 222

    [4]

    Chen D, Atsuhiro N, Wei D, Dennis N, Thomas P R 2011 Nano Lett. 11 561

    [5]

    Oskar A, Christoph L, Siegfried B 2011 Phys. Rev. B 84 085208

    [6]

    Melzer C, Koop E, Mihailetchi V D, Blom P W M 2004 Adv. Funct. Mater. 14 865

    [7]

    Monestier F, Simon J J, Torchio P, Escoubas L, Flory F, Bailly S, Bettignies R, Stephane G, Defranoux C 2007 Sol. Energy Mater. Sol. Cells 91 405

    [8]

    Pettersson L A A A, Roman L S, Olle I 1999 J. Appl. Phys. 86 487

    [9]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2010 Acta Phys. Sin. 60 117106 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2010 物理学报 60 117106]

    [10]

    Gilot J, Barbu I, Wienk M M, Janssen R A J 2007 Appl. Phys. Lett. 91 113520

    [11]

    Snaith H J, Greenham N C, Friend R H 2004 Adv. Mater. 16 1640

    [12]

    Hänsel H, Zettl H, Krausch G, Kisselev R, Thelakkat M, Schmidt H W 2003 Adv. Mater. 15 2056

    [13]

    Hayakawa A, Yoshikawa O, Fujieda T, Uehara K, Yoshikawa S 2007 Appl. Phys. Lett. 90 163517

    [14]

    Lee K M, Hsu C Y, Chiu W H, Tsui M C, TungY L, Tsai S Y, Ho K C 2009 Sol. Energy Mater. Sol. Cells 93 2003

    [15]

    Beek W J E, Wienk M M, Janssen R A J 2004 Adv. Mater. 16 1009

    [16]

    Long Y B 2009 Appl. Phys. Lett. 95 193301

    [17]

    Schulze K, Uhrich C, Schueppel R, Leo K, Pfeiffer M, Brier E, Reinhold E, Baeuerle P 2006 Adv. Mater. 18 2872

    [18]

    Andersson B V, Huang D M, Moulé A J, Olle I 2009 Appl. Phys. Lett. 94 043302

    [19]

    Macleod H A 2001 Thin-Film Optical Filters (3rd Ed.) (Bristol: Institute of Physics Publishing)

    [20]

    Meng X J, Cheng J G, Li B, Tang J, Ye H J, Guo S L, Chu J H 2000 Acta Phys. Sin. 49 811 (in Chinese) [孟祥建, 程建功, 李标, 唐军, 叶红娟, 郭少令, 褚君浩 2000 物理学报 49 811]

    [21]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [22]

    Braun C L 1984 J. Chem. Phys. 80 4157

    [23]

    Zhu D X, Shen W D, Ye H, Liu X, Zhen H Y 2008 J. Phys. D: Appl. Phys. 41 235104

    [24]

    Cheng H M, Ma J M, Zhao Z G, Qi L M 1995 Chem. Mater. 7 663

    [25]

    Kim J Y, Kim S H, Lee H H, Lee K, Ma W L, Gong X, Heeger A J 2006 Adv. Mater. 18 572

    [26]

    Koster L J A, Smits E C P, Mihailetchi V D, Blom P W M 2005 Phys. Rev. B 72 085205

  • [1] Bai Jia-Hao, Guo Jian-Gang. Theoretical studies on bidirectional interfacial shear stress transfer of graphene/flexible substrate composite structure. Acta Physica Sinica, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [2] Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting. Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure. Acta Physica Sinica, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [3] Zuo Fu-Chang, Mei Zhi-Wu, Deng Lou-Lou, Shi Yong-Qiang, He Ying-Bo, Li Lian-Sheng, Zhou Hao, Xie Jun, Zhang Hai-Li, Sun Yan. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics. Acta Physica Sinica, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [4] Hu Yao-Hua, Liu Yan, Mu Ge, Qin Qi, Tan Zhong-Wei, Wang Mu-Guang, Yan Feng-Ping. Application of compressive sensing based on multimode fiber specklegram in optical image encryption. Acta Physica Sinica, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [5] Preparing GaN nanowires on Al2O3 substrate without catalyst and its optical property research. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191923
  • Citation:
Metrics
  • Abstract views:  1486
  • PDF Downloads:  611
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2012
  • Accepted Date:  10 April 2012
  • Published Online:  20 October 2012

Analysis of the light absorption enhancement in polymer solar cell with TiO2 optical spacer

  • 1. Ningxia Key Laboratory of PV Materials, Ningxia University, Yinchuan 750021, China;
  • 2. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
Fund Project:  Project supported by the Science and Technology Project of Ningxia, China.

Abstract: The thickness of the active layer is limited by its low carrier mobility in the polymer solar cell composed of the blend bulk-heterojunction formed by conjugated polymer as donor material and fullerene as acceptor material, which can affect the light absorption in the polymer solar cell. TiO2 inserted into polymer solar cell as optical spacer can redistribute the electromagnetic field inside the device and enhance the light absorption of it. In this paper, light intensity and absorption inside the devices with different thicknesses of P3HT:PCBM layer and TiO2 layer are calculated based on transfer matrix method. Theoretical analysis shows that inserting 10 nm TiO2 into the device can increase 16.3% light absorption, simultaneously thinning the active layer by 25 nm and the thickness of active layer will not apparently reduce the dissociation rate of the excitons. With the device structure of ITO (100 nm)/PEDOT:PSS (40 nm)/P3HT:PCBM/TiO2/LiF (1 nm)/Al (120 nm), the optimal thicknesses of the active layer and TiO2 are 75 nm and 10 nm respectively, which is confirmed by the experimental results from the devices with three different structures.

Reference (26)

Catalog

    /

    返回文章
    返回