Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative phase-field model for dendritic growth with two-sided diffusion

Pan Shi-Yan Zhu Ming-Fang

Quantitative phase-field model for dendritic growth with two-sided diffusion

Pan Shi-Yan, Zhu Ming-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A quantitative phase-field (PF) model with an anti-trapping current (ATC) is developed to simulate the dendritic growth with two-sided diffusion. The asymptotic analysis is performed at the second-order for the PF equations coupled with nonlinear thermodynamic properties and an ATC term under the equal chemical potential condition. The PF mobility and ATC are derived based on the asymptotic analysis in the thin interface limit, and the solute drag model. Then the model is reduced to the dilute solution limit for dendrite solidification of binary alloys. The test of convergence with respect to the interface width exhibits an excellent convergent behavior of the proposed model. The performance of the model is then validated by comparing PF simulations with the predictions of the Gibbs-Thomson relation, the linearized solvability theory, and the modified-Lipton-Glicksman-Kurz (M-LGK) analytical model, for the isothermal dendritic growth of an Fe-0.15 mol%C alloy. The results demonstrate quantitative capabilities of the model that effectively suppresses the abnormal solute trapping effect when the interface is taken artificially to be wide. It is also found that the present model can quantitatively describe dendrite growth with various solid diffusivities, ranging from the case with one-sided diffusion to the symmetrical model.
    • Funds: Project supported by the AO Smith Corporate Technology Center, USA, the National Natural Science Foundation of China (Grant No. 50971042), and the Jiangsu Key Laboratory for Advanced Metallic Materials (Grant No. AMM201005).
    [1]

    Yao W J, Yang C, Han X J, Chen M, Wei B B, Guo Z Yun 2003 Acta Phys. Sin. 52 448 (in Chinese) [姚文静, 杨春, 韩秀君, 陈民, 魏炳波, 过增元 2003 物理学报 52 448]

    [2]

    Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏炳波 2007物理学报 56 4804]

    [3]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [4]

    Zhao D P, JingT, Liu B C 2003 Acta Phys. Sin. 52 1737 (in Chinese) [赵代平, 荆涛, 柳百成 2003物理学报 52 1737]

    [5]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 物理学报 58 S161]

    [6]

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132 (in Chinese) [单博炜, 林鑫, 魏雷, 黄卫东 2009 物理学报 58 1132]

    [7]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年2004 物理学报 53 3477]

    [8]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58, S278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 S278]

    [9]

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 物理学报 58 390]

    [10]

    Long W Y, Cai Q Z, Chen L L, Wei B K 2005 Acta Phys. Sin. 54 256 (in Chinese) [龙文元, 蔡启舟, 陈立亮, 魏伯康 2005 物理学报 54 256]

    [11]

    Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta Phys. Sin. 55 1502 (in Chinese) [朱昌盛, 王智平, 荆涛, 肖荣振2006物理学报 55 1502]

    [12]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007物理学报 56 1514]

    [13]

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin. 57 1084 (in Chinese) [冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084]

    [14]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323

    [15]

    Almgren R F 1999 SIAM J. Appl. Math. 59 2086

    [16]

    Karma A 2001 Phys. Rev. Lett. 87 115701

    [17]

    Echebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 70 061604

    [18]

    Gopinath A, Armstrong R C, Brown R A 2006 J. Cryst. Growth 291 272

    [19]

    Steinbach I 2009 Modelling Simul. Mater. Sci. Eng. 17 073001

    [20]

    Ohno M, Matsuura K 2009 Phys. Rev. E 79 031603

    [21]

    Svoboda J, Fischer F D, Gamsjäger E 2002 Acta Mater. 50 967

    [22]

    Hillert M 1999 Acta Mater. 47 4481

    [23]

    Kim S G, Kim WT, Suzuki T 1999 Phys. Rev. E 60 7186

    [24]

    Ode M, Suzuki T, Kim S G, Kim W T 2000 Sci. Tech. Adv. Mater. 1 43

    [25]

    Ohno M, Matsuura K 2010 Acta Mater. 58 5749

    [26]

    Ramirez J C, Beckermann C, Karma A, Diepers H J 2004 Phys. Rev. E 69 051607

    [27]

    Ramirez J C, Beckermann C 2005 Acta Mater. 53 1721

    [28]

    Barbieri A, Langer J S 1989 Phys. Rev. A 39 5314

    [29]

    Lipton J, Clicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

  • [1]

    Yao W J, Yang C, Han X J, Chen M, Wei B B, Guo Z Yun 2003 Acta Phys. Sin. 52 448 (in Chinese) [姚文静, 杨春, 韩秀君, 陈民, 魏炳波, 过增元 2003 物理学报 52 448]

    [2]

    Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏炳波 2007物理学报 56 4804]

    [3]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [4]

    Zhao D P, JingT, Liu B C 2003 Acta Phys. Sin. 52 1737 (in Chinese) [赵代平, 荆涛, 柳百成 2003物理学报 52 1737]

    [5]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 物理学报 58 S161]

    [6]

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132 (in Chinese) [单博炜, 林鑫, 魏雷, 黄卫东 2009 物理学报 58 1132]

    [7]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年2004 物理学报 53 3477]

    [8]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58, S278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 S278]

    [9]

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 物理学报 58 390]

    [10]

    Long W Y, Cai Q Z, Chen L L, Wei B K 2005 Acta Phys. Sin. 54 256 (in Chinese) [龙文元, 蔡启舟, 陈立亮, 魏伯康 2005 物理学报 54 256]

    [11]

    Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta Phys. Sin. 55 1502 (in Chinese) [朱昌盛, 王智平, 荆涛, 肖荣振2006物理学报 55 1502]

    [12]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007物理学报 56 1514]

    [13]

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin. 57 1084 (in Chinese) [冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084]

    [14]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323

    [15]

    Almgren R F 1999 SIAM J. Appl. Math. 59 2086

    [16]

    Karma A 2001 Phys. Rev. Lett. 87 115701

    [17]

    Echebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 70 061604

    [18]

    Gopinath A, Armstrong R C, Brown R A 2006 J. Cryst. Growth 291 272

    [19]

    Steinbach I 2009 Modelling Simul. Mater. Sci. Eng. 17 073001

    [20]

    Ohno M, Matsuura K 2009 Phys. Rev. E 79 031603

    [21]

    Svoboda J, Fischer F D, Gamsjäger E 2002 Acta Mater. 50 967

    [22]

    Hillert M 1999 Acta Mater. 47 4481

    [23]

    Kim S G, Kim WT, Suzuki T 1999 Phys. Rev. E 60 7186

    [24]

    Ode M, Suzuki T, Kim S G, Kim W T 2000 Sci. Tech. Adv. Mater. 1 43

    [25]

    Ohno M, Matsuura K 2010 Acta Mater. 58 5749

    [26]

    Ramirez J C, Beckermann C, Karma A, Diepers H J 2004 Phys. Rev. E 69 051607

    [27]

    Ramirez J C, Beckermann C 2005 Acta Mater. 53 1721

    [28]

    Barbieri A, Langer J S 1989 Phys. Rev. A 39 5314

    [29]

    Lipton J, Clicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

  • [1] Li Qiang, Li Dian-Zhong, Qian Bai-Nian. Modeling of dendritic growth by means of cellular automaton method. Acta Physica Sinica, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [2] Duan Pei-Pei, Xing Hui, Chen Zhi, Hao Guan-Hua, Wang Bi-Han, Jin Ke-Xin. Phase-field modeling of free dendritic growth of magnesium based alloy. Acta Physica Sinica, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [3] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [4] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [5] Cai Qi-Zhou, Chen Li-Liang, Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [6] Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang, Long Wen-Yuan. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [7] Feng Li, Wang Zhi-Ping, Xiao Rong-Zhen, Zhu Chang-Sheng. Numerical simulation of three-dimensional dendritic growth using phase-field method. Acta Physica Sinica, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [8] C. BECKERMANN, A. KARMA, YU YAN-MEI, YANG GEN-CANG, ZHAO DA-WEN, Lü YI-LI. NUMERICAL SIMULATION OF DENDRITIC GROWTH IN UNDERCOOLED MELT USING PHASE-FIELD APPROACH. Acta Physica Sinica, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
    [9] Du Li-Fei, Zhang Rong, Xing Hui, Zhang Li-Min, Zhang Yang, Liu Lin. Phase-field simulation of solidified microstructure evolution in the presence of lateral constraint. Acta Physica Sinica, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [10] Wang Jun-Wei, Wang Zhi-Ping, Feng Li, Zhu Chang-Sheng. Denedritic growth in forced flow using the phase-field simulation. Acta Physica Sinica, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [11] Yang Hong, Zhang Qing-Guang, Chen Min. A phase-field simulation on the influence of thermal fluctuation on secondary branch growth in undercooled melt. Acta Physica Sinica, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [12] Sun Dong-Ke, Zhu Ming-Fang, Yang Chao-Rong, Pan Shi-Yan, Dai Ting. Modelling of dendritic growth in forced and natural convections. Acta Physica Sinica, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [13] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [14] Wang Chun-Jiang, Yuan Yi, Wang Qiang, Liu Tie, Lou Chang-Sheng, He Ji-Cheng. Effect of high magnetic fields on the migration of second phases during the solidification of metals. Acta Physica Sinica, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [15] Yuan Yi, Li Ying-Long, Wang Qiang, Liu Tie, Gao Peng-Fei, He Ji-Cheng. Influence of high magnetic fields on phase transition and solidification microstructure in Mn-Sb peritectic alloy. Acta Physica Sinica, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [16] Meng Guang-Hui, Lin Xin. Characteristic scale selection of lamellar spacings in binary eutectic solidification. Acta Physica Sinica, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [17] Zhang Zong-Ning, Liu Mei-Lin, Li Wei, Geng Chang-Jian, Zhang Lin, Zhao Qian. Molecular dynamics study of freezing a molten Cu55 cluster on Cu(010)surface. Acta Physica Sinica, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [18] Zhang Lin, Zhang Cai-Bei, Qi Yang, Xu Song-Ning. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [19] Chen Hai-Nan, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of the interaction between solidification interface and bubble using the lattice Boltzmann method with large density ratio. Acta Physica Sinica, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [20] Cai Qi-Zhou, Chen Li-Liang, Wei Bo-Kang, Long Wen-Yuan. Phase-field modeling of isothermal solidification in binary alloy. Acta Physica Sinica, 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
  • Citation:
Metrics
  • Abstract views:  3726
  • PDF Downloads:  600
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2012
  • Accepted Date:  09 June 2012
  • Published Online:  05 November 2012

Quantitative phase-field model for dendritic growth with two-sided diffusion

  • 1. Jiangsu Key Lab for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
Fund Project:  Project supported by the AO Smith Corporate Technology Center, USA, the National Natural Science Foundation of China (Grant No. 50971042), and the Jiangsu Key Laboratory for Advanced Metallic Materials (Grant No. AMM201005).

Abstract: A quantitative phase-field (PF) model with an anti-trapping current (ATC) is developed to simulate the dendritic growth with two-sided diffusion. The asymptotic analysis is performed at the second-order for the PF equations coupled with nonlinear thermodynamic properties and an ATC term under the equal chemical potential condition. The PF mobility and ATC are derived based on the asymptotic analysis in the thin interface limit, and the solute drag model. Then the model is reduced to the dilute solution limit for dendrite solidification of binary alloys. The test of convergence with respect to the interface width exhibits an excellent convergent behavior of the proposed model. The performance of the model is then validated by comparing PF simulations with the predictions of the Gibbs-Thomson relation, the linearized solvability theory, and the modified-Lipton-Glicksman-Kurz (M-LGK) analytical model, for the isothermal dendritic growth of an Fe-0.15 mol%C alloy. The results demonstrate quantitative capabilities of the model that effectively suppresses the abnormal solute trapping effect when the interface is taken artificially to be wide. It is also found that the present model can quantitatively describe dendrite growth with various solid diffusivities, ranging from the case with one-sided diffusion to the symmetrical model.

Reference (29)

Catalog

    /

    返回文章
    返回