Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on the fabrication of Ag-doped ZnO nanorods by hydrothermal method

Chen Xian-Mei Wang Xiao-Xia Gao Xiao-Yong Zhao Xian-Wei Liu Hong-Tao Zhang Sa

Investigation on the fabrication of Ag-doped ZnO nanorods by hydrothermal method

Chen Xian-Mei, Wang Xiao-Xia, Gao Xiao-Yong, Zhao Xian-Wei, Liu Hong-Tao, Zhang Sa
PDF
Get Citation
  • Ag-doped ZnO nanorods with different morphologies and optical properties are synthesized by hydrothermal method on the DC magnetron-sputtered Al-doped ZnO (AZO) seed layers. The influences of the molar ratio of Ag ions to Zn ions (RAg/Zn) and the AZO seed layer on the structural and optical properties of the Ag-doped ZnO nanorods are carefully studied by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, EDS spectrum, etc. The changes in the microstructure and optical property of Ag-doped ZnO nanorods are closely related to the change in the average head-face dimension induced by Ag doping as RAg/Zn increases, owing to the different relative proportions of Ag ions doped in ZnO nanorods resulting from the different particle sizes and densities of the seed layers. The photoluminescence intensity in the visible region for the ZnO nanorods growing on the 15 min-sputtered AZO is stronger than that of the ZnO nanorods growing on the 10 min-sputtered AZO seed layer at the same RAg/Zn, which results from the increased defects in ZnO. More point defects caused by Ag doping are produced as RAg/Zn increases, resulting in the broadening of PL envelope in the visible region. The microstructure of pure ZnO nanorod is related to the seed layer thickness-related degree of crystallinity and particle size.
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant No. 60807001), the Foundation of Henan Educational Committee (Grant No. 2010A140017), the Foundation of Young Key Teachers from University of Henan Province (Grant No. 2011GGJS-008), and the Graduate Innovation of Zhengzhou University (Grant No. 11L10102).
    [1]

    Wang Y, Xu X L, Xie W Y, Wang Z B, Lv L, Zhao Y L 2008 Acta Phys. Sin. 57 2582 (in Chinese) [王烨, 许小亮, 谢炜宇, 汪壮兵, 吕柳, 赵亚丽 2008 物理学报 57 2582]

    [2]

    Wang J W, Bian J M, Sun J C, Liang H W, Zhao J Z, Du G T 2008 Acta Phys. Sin. 57 5212 (in Chinese) [王经纬, 边继明, 孙景昌, 梁红伟, 赵涧泽, 杜国同 2008 物理学报 57 5212]

    [3]

    Kong J F, Dou Z M, Wang Z Q, Zhang B, Zhu W H, Zhou K X, Liu M Y, Zhu H, Zhou J F 2012 Chin. Phys. B 21 068101

    [4]

    Zhao S Q, Yang L M, Liu W W, Zhao K, Zhou Y L and Zhou Q L 2010 Chin. Phys. B 19 087204

    [5]

    Li M K, Wang D Z, Ding Y W, Guo X Y, Ding S, Jin H 2007 Mater. Sci. Eng. A 452-453 417

    [6]

    Seo B I, Shaislamov U A, Ha M H, Kim S W, Kim H K, Yang B 2007 Physica E 37 241

    [7]

    Yuan H T, Zhang Y, Gu J H 2004 Acta Phys. Sin. 53 0646 (in Chinese) [袁洪涛, 张跃, 谷锦华 2004 物理学报 53 0646]

    [8]

    Cui J B, Daghlian C P, Gibson U J, Pu sche R, Geithner P, Ley L 2005 J. Appl. Phys. 97 044315

    [9]

    Cao D, Jiang X D, Li D W, Sun J D 2010 Materials Rev. 24 81 (in Chinese) [曹东, 蒋向东, 李大伟, 孙继伟 2010 材料导报 24 81]

    [10]

    Gao X Y, Lin Q G, Feng H L, Liu Y F, Lu J X 2009 Thin Solid Films 517 4684

    [11]

    Gao X Y, Ma J M, Chen C, Zhao M K, Gu J H, Lu J X 2012 J. Korean Phys. Soc. 60 807

    [12]

    Zhang J, Que W X, Jia Q Y, Ye X D, Ding Y C 2011 Appl. Surf. Sci. 257 10134

    [13]

    Tang B, Deng H, Shui Z W, Wei M, Chen J J, Hao X 2007 Acta Phys. Sin. 56 5176 (in Chinese) [唐斌, 邓宏, 税正伟, 韦敏, 陈金菊, 郝昕 2007 物理学报 56 5176]

    [14]

    Kim J Y, Cho J W, Kim S H 2011 Mater. Lett. 65 1161

    [15]

    Song J, Lim S 2007 J. Phys. Chem. C 111 596

    [16]

    Wei X Y, Qi K C, Lin Z L, Yuan H M, Wang X J, Zhang G H 2010 Semiconductor Optoelectronics 31 570 (in Chinese) [韦新颖, 祁康成, 林祖伦, 袁红梅, 王小菊, 张国宏 2010 半导体光电 31 570]

    [17]

    Karunakaran C, Rajeswari V, Gomathisankar P 2011 Solid State Sci. 13 923

    [18]

    Wang B Q, Xia C H, Fu Q, Wang P W, Dan X D, Yu D P 2008 Acta Phys. Chim. Sin. 24 1165 (in Chinese) [王百齐, 夏春辉, 富强, 王朋伟, 单旭东, 俞大鹏 2008 物理化学学报 24 1165]

    [19]

    Segmuller A, Murakami M, Rosenberg R 1988 Analytical Techniques for Thin Films (Boston: Academic Press) p143

    [20]

    Cebulla R, Wendi R, Ellmer K 1998 J. Appl. Phys. 83 1087

    [21]

    Ji L W, Peng S M, Wu J S, Shih W S, Wu C Z, Tang I T 2009 J. Phys. Chem. Solids 70 1359

    [22]

    Yang J H, Lang J H, Yang L L, Zhang Y J, Wang D D, Fan H G, Liu H L, Wang Y X, Gao M, Feng B 2008 Appl. Surf. Sci. 255 2500

    [23]

    Yang J H, Lang J H, Yang L L, Zhang Y J, Wang D D, Fan H G, Liu H L, Wang Y X, Gao M 2008 J. Alloys Compd 450 521

  • [1]

    Wang Y, Xu X L, Xie W Y, Wang Z B, Lv L, Zhao Y L 2008 Acta Phys. Sin. 57 2582 (in Chinese) [王烨, 许小亮, 谢炜宇, 汪壮兵, 吕柳, 赵亚丽 2008 物理学报 57 2582]

    [2]

    Wang J W, Bian J M, Sun J C, Liang H W, Zhao J Z, Du G T 2008 Acta Phys. Sin. 57 5212 (in Chinese) [王经纬, 边继明, 孙景昌, 梁红伟, 赵涧泽, 杜国同 2008 物理学报 57 5212]

    [3]

    Kong J F, Dou Z M, Wang Z Q, Zhang B, Zhu W H, Zhou K X, Liu M Y, Zhu H, Zhou J F 2012 Chin. Phys. B 21 068101

    [4]

    Zhao S Q, Yang L M, Liu W W, Zhao K, Zhou Y L and Zhou Q L 2010 Chin. Phys. B 19 087204

    [5]

    Li M K, Wang D Z, Ding Y W, Guo X Y, Ding S, Jin H 2007 Mater. Sci. Eng. A 452-453 417

    [6]

    Seo B I, Shaislamov U A, Ha M H, Kim S W, Kim H K, Yang B 2007 Physica E 37 241

    [7]

    Yuan H T, Zhang Y, Gu J H 2004 Acta Phys. Sin. 53 0646 (in Chinese) [袁洪涛, 张跃, 谷锦华 2004 物理学报 53 0646]

    [8]

    Cui J B, Daghlian C P, Gibson U J, Pu sche R, Geithner P, Ley L 2005 J. Appl. Phys. 97 044315

    [9]

    Cao D, Jiang X D, Li D W, Sun J D 2010 Materials Rev. 24 81 (in Chinese) [曹东, 蒋向东, 李大伟, 孙继伟 2010 材料导报 24 81]

    [10]

    Gao X Y, Lin Q G, Feng H L, Liu Y F, Lu J X 2009 Thin Solid Films 517 4684

    [11]

    Gao X Y, Ma J M, Chen C, Zhao M K, Gu J H, Lu J X 2012 J. Korean Phys. Soc. 60 807

    [12]

    Zhang J, Que W X, Jia Q Y, Ye X D, Ding Y C 2011 Appl. Surf. Sci. 257 10134

    [13]

    Tang B, Deng H, Shui Z W, Wei M, Chen J J, Hao X 2007 Acta Phys. Sin. 56 5176 (in Chinese) [唐斌, 邓宏, 税正伟, 韦敏, 陈金菊, 郝昕 2007 物理学报 56 5176]

    [14]

    Kim J Y, Cho J W, Kim S H 2011 Mater. Lett. 65 1161

    [15]

    Song J, Lim S 2007 J. Phys. Chem. C 111 596

    [16]

    Wei X Y, Qi K C, Lin Z L, Yuan H M, Wang X J, Zhang G H 2010 Semiconductor Optoelectronics 31 570 (in Chinese) [韦新颖, 祁康成, 林祖伦, 袁红梅, 王小菊, 张国宏 2010 半导体光电 31 570]

    [17]

    Karunakaran C, Rajeswari V, Gomathisankar P 2011 Solid State Sci. 13 923

    [18]

    Wang B Q, Xia C H, Fu Q, Wang P W, Dan X D, Yu D P 2008 Acta Phys. Chim. Sin. 24 1165 (in Chinese) [王百齐, 夏春辉, 富强, 王朋伟, 单旭东, 俞大鹏 2008 物理化学学报 24 1165]

    [19]

    Segmuller A, Murakami M, Rosenberg R 1988 Analytical Techniques for Thin Films (Boston: Academic Press) p143

    [20]

    Cebulla R, Wendi R, Ellmer K 1998 J. Appl. Phys. 83 1087

    [21]

    Ji L W, Peng S M, Wu J S, Shih W S, Wu C Z, Tang I T 2009 J. Phys. Chem. Solids 70 1359

    [22]

    Yang J H, Lang J H, Yang L L, Zhang Y J, Wang D D, Fan H G, Liu H L, Wang Y X, Gao M, Feng B 2008 Appl. Surf. Sci. 255 2500

    [23]

    Yang J H, Lang J H, Yang L L, Zhang Y J, Wang D D, Fan H G, Liu H L, Wang Y X, Gao M 2008 J. Alloys Compd 450 521

  • [1] Chen Xian-Mei, Gao Xiao-Yong, Zhang Sa, Liu Hong-Tao. Influence of thermal decomposition temperature of zinc acetate on the structural and the optical properties of ZnO nanorods. Acta Physica Sinica, 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [2] Huang Jin-Zhao, Li Shi-Shuai, Feng Xiu-Peng. Optoelectronic properties of ZnO nanorods fabricated by hydrothermal decomposition and its applications in organic/inorganic electroluminescence heterostructure. Acta Physica Sinica, 2010, 59(8): 5839-5844. doi: 10.7498/aps.59.5839
    [3] Liu Jia, Xu Ling-Ling, Zhang Hai-Lin, Lü Wei, Zhu Lin, Gao Hong, Zhang Xi-Tian. One-step hydrothermal process for self-assembly of zinc oxide nanorods array on Al-doped ZnO nanoplate surface. Acta Physica Sinica, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [4] Wang Shi-Wei, Zhu Ming-Yuan,  Zhong Min, Liu Cong, Li Ying, Hu Ye-Min, Jin Hong-Ming. Effects of pulsed magnetic field on Mn-doped ZnO diluted magnetic semiconductor prepared by hydrothermal method. Acta Physica Sinica, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [5] Wan Bu-Yong, Yuan Jin-She, Feng Qing, Wang Ao. Hydrothermal synthesis of K, Na doped Cu-S nanocrystalline and effect of doping on crystal structure and performance. Acta Physica Sinica, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [6] Zhu Ming-Yuan, Liu Cong, Bo Wei-Qiang, Shu Jia-Wu, Hu Ye-Min, Jin Hong-Ming, Wang Shi-Wei, Li Ying. Synthesis of Cr-doped ZnO diluted magnetic semiconductor by hydrothermal method under pulsed magnetic field. Acta Physica Sinica, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [7] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [8] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [9] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [10] Yu Bo. The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound. Acta Physica Sinica, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
  • Citation:
Metrics
  • Abstract views:  1375
  • PDF Downloads:  947
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2012
  • Accepted Date:  29 September 2012
  • Published Online:  05 March 2013

Investigation on the fabrication of Ag-doped ZnO nanorods by hydrothermal method

  • 1. Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
Fund Project:  Project Supported by the National Natural Science Foundation of China (Grant No. 60807001), the Foundation of Henan Educational Committee (Grant No. 2010A140017), the Foundation of Young Key Teachers from University of Henan Province (Grant No. 2011GGJS-008), and the Graduate Innovation of Zhengzhou University (Grant No. 11L10102).

Abstract: Ag-doped ZnO nanorods with different morphologies and optical properties are synthesized by hydrothermal method on the DC magnetron-sputtered Al-doped ZnO (AZO) seed layers. The influences of the molar ratio of Ag ions to Zn ions (RAg/Zn) and the AZO seed layer on the structural and optical properties of the Ag-doped ZnO nanorods are carefully studied by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, EDS spectrum, etc. The changes in the microstructure and optical property of Ag-doped ZnO nanorods are closely related to the change in the average head-face dimension induced by Ag doping as RAg/Zn increases, owing to the different relative proportions of Ag ions doped in ZnO nanorods resulting from the different particle sizes and densities of the seed layers. The photoluminescence intensity in the visible region for the ZnO nanorods growing on the 15 min-sputtered AZO is stronger than that of the ZnO nanorods growing on the 10 min-sputtered AZO seed layer at the same RAg/Zn, which results from the increased defects in ZnO. More point defects caused by Ag doping are produced as RAg/Zn increases, resulting in the broadening of PL envelope in the visible region. The microstructure of pure ZnO nanorod is related to the seed layer thickness-related degree of crystallinity and particle size.

Reference (23)

Catalog

    /

    返回文章
    返回